Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Ecol Appl ; 33(1): e2743, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36107148

RESUMEN

There is increasing evidence that farmers in many areas are achieving below maximum yields due to insufficient pollination. Practical and effective approaches are needed to maintain wild pollinator populations within agroecosystems so they can deliver critical pollination services that underpin crop production. We established nesting and wildflower habitat interventions in 24 UK apple orchards and measured effects on flower-visiting insects and the pollination they provide, exploring how this was affected by landscape context. We quantified the extent of pollination deficits and assessed whether the management of wild pollinators can reduce deficits and deliver improved outcomes for growers over 3 years. Wildflower interventions increased solitary bee numbers visiting apple flowers by over 20%, but there was no effect of nesting interventions. Other pollinator groups were influenced by both local and landscape-scale factors, with bumblebees and hoverflies responding to the relative proportion of semi-natural habitat at larger spatial scales (1000 m), while honeybees and other flies responded at 500 m or less. By improving fruit number and quality, pollinators contributed more than £16 k per hectare. However, deficits (where maximum potential was not being reached due to a lack of pollination) were recorded and the extent of these varied across orchards, and from year to year, with a 22% deficit in output in the worst (equivalent to ~£14 k/ha) compared to less than 3% (equivalent to ~£2 k/ha) in the best year. Although no direct effect of our habitat interventions on deficits in gross output was observed, initial fruit set and seed set deficits were reduced by abundant bumblebees, and orchards with a greater abundance of solitary bees saw lower deficits in fruit size. The abundance of pollinators in apple orchards is influenced by different local and landscape factors that interact and vary between years. Consequently, pollination, and the extent of economic output deficits, also vary between orchards and years. We highlight how approaches, including establishing wildflower areas and optimizing the ratio of cropped and non-cropped habitats can increase the abundance of key apple pollinators and improve outcomes for growers.


Asunto(s)
Malus , Polinización , Abejas , Animales , Ecosistema , Insectos , Frutas , Productos Agrícolas , Flores
2.
Parasitol Res ; 122(11): 2585-2597, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37707606

RESUMEN

Controlling the invasive fruit pest, Drosophila suzukii, relies on a range of complimentary pest management approaches. However, increasing external costs (e.g., labour, exclusion mesh and fuel), are limiting the ability to control the pest via non-chemical means. Extant UK parasitoids could be exploited for the suppression of D. suzukii populations, but there is currently a lack of knowledge of the UK species utilising D. suzukii as a host or their lifecycle requirements. Between 2017 and 2020, we identified parasitoids developing in D. suzukii, in Southeast England.Sentinel traps, containing laboratory reared D. suzukii larvae/pupae in fruit, were deployed within the vicinity of commercial crops and semi-natural areas. Six generalist parasitoid species were recovered from D. suzukii sentinel traps. These included two species of larval parasitoids (Leptopilina heterotoma Thomson (Hymenoptera: Figitidae) and Asobara tabida (Nees) (Hymenoptera: Braconidae) and four pupal parasitoids (Pachycrepoideus vindemiae (Rondani) (Hymenoptera: Pteromalidae), Spalangia erythromera (Forster) (Hymenoptera: Pteromalidae), Trichopria modesta (Ratzeburg, 1848) and T. prema Nixon (both Hymenoptera: Diapriidae)).The performance of the first four species as D. suzukii parasitoids was further tested in the laboratory and then in the field to assess rates of parasitism. Pachycrepoideus vindemiae was the most abundant species recovered from field collections and had in increasing rate of population rate in the laboratory. Other species were not successful at parasitising D. suzukii. In the field, adult D. suzukii emergence from sentinel traps was reduced by ~ 21% where parasitoids could access D. suzukii larvae and pupae.Parasitoids of D. suzukii are understudied in the UK, and this research indicates where future efforts could be made in understanding the interaction between host and parasitoid and the opportunities to exploit extant parasitoids for the control of D. suzukii. We also evaluate the prospects for classical and augmented control and discuss how they may fit with current regional integrated pest management options.


Asunto(s)
Drosophila , Himenópteros , Animales , Larva , Pupa , Inglaterra
3.
Basic Appl Ecol ; 58: 2-14, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35115899

RESUMEN

Sown wildflower areas are increasingly recommended as an agri-environmental intervention measure, but evidence for their success is limited to particular insect groups or hampered by the challenges of establishing seed mixes and maintaining flower abundance over time. We conducted a replicated experiment to establish wildflower areas to support insect pollinators in apple orchards. Over three years, and across 23 commercial UK orchards with and without sown wildflowers, we conducted 828 transect surveys across various non-crop habitats. We found that the abundance of flower-visiting solitary bees, bumblebees, honeybees, and beetles was increased in sown wildflower areas, compared with existing non-crop habitats in control orchards, from the second year following floral establishment. Abundance of hoverflies and other non-syrphid flies was increased in wildflower areas from the first year. Beyond the effect of wildflower areas, solitary bee abundance was also positively related to levels of floral cover in other local habitats within orchards, but neither local nor wider landscape-scale context affected abundance of other studied insect taxa within study orchards. There was a change in plant community composition on the sown wildflower areas between years, and in patterns of flowering within and between years, showing a succession from unsown weedy species towards a dominance of sown species over time. We discuss how the successful establishment of sown wildflower areas and delivery of benefits for different insect taxa relies on appropriate and reactive management practices as a key component of any such agri-environment scheme.

4.
Bull Entomol Res ; 112(4): 451-457, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35199630

RESUMEN

Aphidophagous hoverflies (Diptera, Syrphidae, Syrphinae) are common flower visitors and aphid predators in a range of flowering plants, including fruit crops. Here, we investigate whether aphid prey DNA can be detected in the gut contents of hoverfly larvae from a commercial strawberry field as a proof of concept that a molecular approach can be used to measure agricultural biocontrol. We used high-throughput sequencing (HTS) to target insect DNA and compared the resulting data to reference databases containing aphid and hoverfly DNA sequences. We explored what impact incorporating wildflowers within polythene-clad tunnels may have on aphid DNA detection rates in hoverfly larvae. In a randomized block experiment, coriander (Coriandrum sativum), field forget-me-not (Myosotis arvensis) and corn mint (Mentha arvensis) plants were inserted in rows of strawberries. Their effect on aphid DNA detection rates was assessed. Aphid DNA was found in 55 of 149 specimens (37%) validating the method in principle for measuring agricultural services provided by hoverflies. Interestingly, detection rates were higher near plots with forget-me-not than plots with coriander, though detection rates in control plots did not differ significantly from either wildflower species. These findings confirm that hoverflies predate aphids in UK strawberry fields, and that HTS is a viable method of identifying aphid DNA in predatory hoverflies. We comment on the need for further method development to narrow down identifications of both predator and prey. We furthermore provide some evidence that there is an effect of intercropping strawberry crops with wildflowers which may affect aphid consumption in hoverfly larvae.


Asunto(s)
Áfidos , Dípteros , Animales , Productos Agrícolas , ADN , Larva , Conducta Predatoria
5.
Ecol Appl ; 31(8): e02445, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34448315

RESUMEN

Pollinators face multiple pressures and there is evidence of populations in decline. As demand for insect-pollinated crops increases, crop production is threatened by shortfalls in pollination services. Understanding the extent of current yield deficits due to pollination and identifying opportunities to protect or improve crop yield and quality through pollination management is therefore of international importance. To explore the extent of "pollination deficits," where maximum yield is not being achieved due to insufficient pollination, we used an extensive dataset on a globally important crop, apples. We quantified how these deficits vary between orchards and countries and we compared "pollinator dependence" across different apple varieties. We found evidence of pollination deficits and, in some cases, risks of overpollination were even apparent for which fruit quality could be reduced by too much pollination. In almost all regions studied we found some orchards performing significantly better than others in terms of avoiding a pollination deficit and crop yield shortfalls due to suboptimal pollination. This represents an opportunity to improve production through better pollinator and crop management. Our findings also demonstrated that pollinator dependence varies considerably between apple varieties in terms of fruit number and fruit quality. We propose that assessments of pollination service and deficits in crops can be used to quantify supply and demand for pollinators and help to target local management to address deficits although crop variety has a strong influence on the role of pollinators.


Asunto(s)
Malus , Polinización , Animales , Abejas , Productos Agrícolas , Frutas , Insectos
6.
J Chem Ecol ; 47(4-5): 394-405, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33844148

RESUMEN

Nesidiocoris tenuis (Reuter) (Heteroptera: Miridae) is a tropical mirid bug used as a biocontrol agent in protected crops, including tomatoes. Although N. tenuis predates important insect pests, especially whitefly, it also causes damage by feeding on tomato plants when prey populations decline, resulting in significant economic losses for growers. The pest is now established in some all-year-round tomato crops in Europe and control measures involve the application of pesticides which are incompatible with current IPM programs. As part of future IPM strategies, the pheromone of N. tenuis was investigated. Volatile collections were made from groups and individuals of mated and unmated, females and males. In analyses of these collections by gas chromatography coupled with electroantennographic (EAG) recording from antennae of male bugs, two EAG-active components were detected and identified as 1-octanol and octyl hexanoate. Unlike other mirids, both male and female N. tenuis produced the two compounds, before and after mating, and both sexes gave EAG responses to both compounds. Furthermore, only octyl hexanoate was detected in whole body solvent washes from both sexes. These compounds are not related to the derivatives of 3-hydroxybutyrate esters found as pheromone components in other members of the Bryocrinae sub-family, and the latter could not be detected in volatiles from N. tenuis and did not elicit EAG responses. Nevertheless, experiments carried out in commercial glasshouses showed that traps baited with a blend of the synthetic pheromone components caught essentially only male N. tenuis, and significantly more than traps baited with octyl hexanoate alone. The latter caught significantly more N. tenuis than unbaited traps which generally caught very few bugs. Traps at plant height caught more N. tenuis males than traps 1 m above or at the base of the plants. The trap catches provided an indication of population levels of N. tenuis and were greatly reduced following an application of insecticide.


Asunto(s)
Heterópteros/química , Atractivos Sexuales/análisis , Solanum lycopersicum/metabolismo , Compuestos Orgánicos Volátiles/análisis , 1-Octanol/análisis , Animales , Caproatos/análisis , Femenino , Cromatografía de Gases y Espectrometría de Masas , Heterópteros/metabolismo , Control de Insectos , Masculino , Conducta Sexual Animal
7.
Proc Biol Sci ; 287(1918): 20191969, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31910787

RESUMEN

Supplemental feeding of wildlife populations can locally increase the density of individuals, which may in turn impact disease dynamics. Flower strips are a widely used intervention in intensive agricultural systems to nutritionally support pollinators such as bees. Using a controlled experimental semi-field design, we asked how density impacts transmission of a virus and a trypanosome parasite in bumblebees. We manipulated bumblebee density by using different numbers of colonies within the same area of floral resource. In high-density compartments, slow bee paralysis virus was transmitted more quickly, resulting in higher prevalence and level of infection in bumblebee hosts. By contrast, there was no impact of density on the transmission of the trypanosome Crithidia bombi, which may reflect the ease with which this parasite is transmitted. These results suggest that agri-environment schemes such as flower strips, which are known to enhance the nutrition and survival of bumblebees, may also have negative impacts on pollinators through enhanced disease transmission. Future studies should assess how changing the design of these schemes could minimize disease transmission and thus maximise their health benefits to wild pollinators.


Asunto(s)
Abejas/virología , Crithidia/fisiología , Interacciones Huésped-Parásitos , Trypanosoma , Agricultura , Animales , Abejas/fisiología , Flores , Polinización , Virus ARN
8.
Agric Ecosyst Environ ; 281: 124-133, 2019 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-31481820

RESUMEN

Both wild and managed pollinators significantly contribute to global food production by providing pollination services to crops. Colonies of commercially-reared honey bees and bumblebees are two of the largest groups of managed pollinators. Bumblebees in particular are increasingly used on soft fruit crops, such as strawberry, an economically important crop globally. Despite the use of commercial bumblebees in strawberry crops, there is little quantitative evidence that they provide a benefit to farmers. Given the negative impacts that commercial colonies can have on wild bee populations, it is vital that the benefits of commercial bumblebees are quantified, so reasoned management decisions can be made that provide maximum benefit to both farmers and wild bees. In this study, commercial colonies of the UK native subspecies Bombus terrestris audax were placed into June-bearer (flowering March-April, varieties 'Malling Centenary' and 'Flair') and everbearer (flowering May-June) strawberry polytunnels on a soft-fruit farm in the south east of England, and opened and closed at weekly intervals. The flower-visiting assemblage inside polytunnels was quantified, and fruit was harvested and quality assessed. In the June-bearer variety Malling Centenary, the presence of commercial bumblebees increased the amount of high commercial grade fruit by 25%. In contrast, no benefit of commercial bees on pollination or fruit quality was observed in the June-bearer variety Flair and the everbearer crop. The increase in quality of fruit in the Malling Centenary crop may be driven by the higher B. terrestris audax flower visitation rates seen in this crop in combination with varietal differences in pollination dependency. The number of flower visits by wild pollinators was not a well-supported predictor of strawberry quality, thus the benefit they provide in this system remains to be elucidated. The results presented here suggest that commercial bumblebees can greatly increase the quality and subsequent value of a strawberry crop, when deployed on a suitable variety at a time when wild pollinator numbers are low. However, the results also raise the possibility that commercial colonies do not always provide the benefits to strawberry crops that they are thought to. For growers to make informed decisions on commercial bumblebee use, further research is required into the effect of commercial bumblebees on the major strawberry varieties, in different locations and seasons. This study is an important step in gaining this understanding.

9.
Exp Appl Acarol ; 72(4): 367-377, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28831615

RESUMEN

Tetranychus urticae is a widespread polyphagous mite, found on a variety of fruit crops. Tetranychus urticae feeds on the underside of the leaves perforating plant cells and sucking the cell contents. Foliar damage and excess webbing produced by T. urticae can reduce fruit yield. Assessments of T. urticae populations while small provide reliable and accurate ways of targeting control strategies and recording their efficacy against T. urticae. The aim of this study was to evaluate four methods for extracting low levels of T. urticae from leaf samples, representative of developing infestations. These methods were compared to directly counting of mites on leaves under a dissecting microscope. These methods were ethanol washing, a modified paraffin/ethanol meniscus technique, Tullgren funnel extraction and the Henderson and McBurnie mite brushing machine with consideration to: accuracy, precision and simplicity. In addition, two physically different leaf morphologies were compared; Prunus leaves which are glabrous with Malus leaves which are setaceous. Ethanol extraction consistently yielded the highest numbers of mites and was the most rapid method for recovering T. urticae from leaf samples, irrespective of leaf structure. In addition the samples could be processed and stored before final counting. The advantages and disadvantages of each method are discussed in detail.


Asunto(s)
Cadena Alimentaria , Control de Insectos/métodos , Malus , Hojas de la Planta , Prunus avium , Tetranychidae/fisiología , Animales , Malus/crecimiento & desarrollo , Hojas de la Planta/crecimiento & desarrollo , Densidad de Población , Prunus avium/crecimiento & desarrollo
10.
Pest Manag Sci ; 80(7): 3160-3171, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38348748

RESUMEN

BACKGROUND: Spotted wing drosophila, Drosophila suzukii (Matsumura) (Diptera: Drosophilidae), is an economically important pest of soft and stone fruit crops. The aim of this study was to identify repellents, formulated in dispensers, which could protect crops from D. suzukii. Fourteen potential repellents were screened against summer- and winter-morph D. suzukii through electroantennography and behavioural bioassays. Repellents effective in the laboratory were tested in polytunnels to determine their efficacy in reducing catches in fruit-baited traps. Further trials of three potential repellents were conducted to determine the distances over which repellent dispensers could reduce D. suzukii emergence in a strawberry crop. RESULTS: All 14 chemicals screened were detected by the antennae of both D. suzukii morphs. Hexyl acetate and geosmin both elicited a significantly greater corrected EAG response in summer morphs than winter morphs. Summer-morph D. suzukii were repelled by butyl acetate, ethyl propionate, methyl N,N-dimethyl anthranilate, geosmin, methyl salicylate, DEET and benzaldehyde at one or more doses test in laboratory bioassays. Winter morphs were repelled by ethyl propionate, methyl anthranilate, methyl N,N-dimethyl anthranilate, DEET, benzaldehyde and butyl anthranilate at one or more of the doses tested in the laboratory. Ethyl propionate, methyl N,N-dimethylanthranilate and benzaldehyde repelled both morphs from fruit-baited traps in polytunnel trapping trials. Ethyl propionate and methyl N,N-dimethylanthranilate reduced emergence of D. suzukii in a strawberry crop over 3-5 m. CONCLUSIONS: Ethyl propionate and methyl N,N-dimethylanthranilate may protect strawberry crops against D. suzukii. Future work should test these repellents in combination with attractants in a 'push-pull' strategy. © 2024 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Drosophila , Control de Insectos , Repelentes de Insectos , ortoaminobenzoatos , Animales , Repelentes de Insectos/farmacología , Drosophila/efectos de los fármacos , Drosophila/fisiología , ortoaminobenzoatos/farmacología , Control de Insectos/métodos , Propionatos/farmacología , Femenino , Masculino , Fragaria
11.
J Insect Behav ; 36(3): 222-238, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37547869

RESUMEN

Anthocoris nemoralis is the dominant predator of pear sucker (Cacopsylla pyri) in the UK. Anthocoris nemoralis migrates into orchards in spring or is introduced as a biocontrol agent, reaching peak population levels in July-August, contributing to effective control of summer pear sucker populations. However, due to temperature dependent development and metabolism there are concerns that C. pyri populations or feeding rates may increase due to changing climatic conditions. Thus, how A. nemoralis responds to temperature, impacts its ability as a biocontrol agent. Functional response assays, monitoring attack rate and handling time of A. nemoralis and behavioral assays, using Ethovision tracking software occurred, to assess the impact of temperature on predation. Experiments were conducted at current and future July-August mean temperatures, predicted using RCP4.5 and RCP8.5 (medium and high, representative concentration pathway) emissions scenarios, using 2018 UK Climate Projections (UKCP18). All treatments demonstrated a Type II functional response, with female anthocorids demonstrating shorter handling times and higher attack rates than males. Males showed longer prey handling times at 18 °C compared to 23 °C and more time was spent active at lower temperatures for both sexes. Females did not show significant differences in attack rate or handling time in response to temperature. Overall prey consumption was also not significantly affected by temperature for either sex. This study suggests that anthocorids are likely to remain effective natural enemies under future predicted temperatures, due to non-significant differences in prey consumption. Supplementary Information: The online version contains supplementary material available at 10.1007/s10905-023-09836-5.

12.
Pest Manag Sci ; 79(11): 4132-4139, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37516913

RESUMEN

Drosophila suzukii (Matsumura) or spotted wing Drosophila is a worldwide invasive pest of soft- and stone-fruit production. Female D. suzukii lay their eggs in ripening fruit and the hatched larvae damage fruit from the inside, rendering it unmarketable and causing significant economic loss. Current methods to reduce D. suzukii population in the field primarily rely on chemical insecticides which are not a sustainable long-term solution and increase the risk of resistance developing. Several studies demonstrate that when D. suzukii encounter or coexist with other Drosophila on a food source, this is usually a disadvantage to D. suzukii, leading to reduced oviposition and increased larval mortality. These effects have potential to be exploited from a pest management perspective. In this review we summarise recent research articles focusing on the interspecific interactions between D. suzukii and other Drosophila species aimed at understanding how this drives D. suzukii behaviour. Potential semiochemical and microbiome impacts are postulated as determinants of D. suzukii behaviour. Development of control practices focusing on reducing D. suzukii populations and deterring them from laying eggs by utilising factors that drive their behaviour are discussed. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Drosophila , Insecticidas , Femenino , Animales , Oviposición , Especies Introducidas , Reproducción , Larva , Frutas , Control de Insectos
13.
Insects ; 14(6)2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37367306

RESUMEN

Wild ground-nesting bees are key pollinators of apple (Malus domestica). We explored, (1) where they choose to nest, (2) what influences site selection and (3) species richness in orchards. Twenty-three orchards were studied over three years; twelve were treated with additional herbicide to increase bare ground with the remainder as untreated controls. Vegetation cover, soil type, soil compaction, nest number and location, and species were recorded. Fourteen species of ground-nesting solitary/eusocial bee were identified. Most nests were in areas free of vegetation and areas treated with additional herbicide were utilised by ground nesting bees within three years of application. Nests were also evenly distributed along the vegetation-free strips underneath the apple trees. This area was an important ground-nesting bee habitat with mean numbers of nests at peak nest activity of 873 per ha (range 44-5705), and 1153 per ha (range 0-4082) in 2018 and 2019, respectively. Increasing and maintaining areas of bare ground in apple orchards during peak nesting events could improve nesting opportunities for some species of ground-nesting bee and, combined with flowers strips, be part of a more sustainable pollinator management approach. The area under the tree row is an important contributor to the ground-nesting bee habitat and should be kept bare during peak nesting.

14.
Insects ; 13(3)2022 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-35323602

RESUMEN

Integrated pest management (IPM) has been practiced by the fruit industry for at least 30 years. Naturally occurring beneficial insects have been encouraged to thrive alongside introduced predatory insects. However, Conservation Biological Control (CBC) and augmented biocontrol through the release of large numbers of natural enemies is normally only widely adopted when a pest has become resistant to available conventional pesticides and control has begun to break down. In addition, the incorporation of wild pollinator management, essential to fruit production, has, in the past, not been a priority but is now increasingly recognized through integrated pest and pollinator management (IPPM). This review focuses on the impacts on pest regulation and pollination services in fruit crops through the delivery of natural enemies and pollinating insects by provisioning areas of fruiting crops with floral resources. Most of the studies in this review highlighted beneficial or benign impacts of floral resource prevision to fruit crops. However, placement in the landscape and spill-over of beneficial arthropods into the crop can be influential and limiting. This review also highlights the need for longer-term ecological studies to understand the impacts of changing arthropod communities over time and the opportunity to tailor wildflower mixes to specific crops for increased pest control and pollination benefits, ultimately impacting fruit growers bottom-line with less reliance on pesticides.

15.
Insects ; 13(11)2022 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-36354819

RESUMEN

Drosophila suzukii (Matsumura), is a globally invasive pest of soft and stone fruit. To survive winter in temperate zones it enters a reproductive diapause in a morphologically distinct phenotype. Phagostimulant baits can be combined with insecticides in attract-and-kill strategies for control. We investigated the effectiveness of single yeast species and combinations of co-fermented yeast phagostimulant baits when combined with insecticides in laboratory assays against both summer- and winter-morph D. suzukii. Candida zemplininia or Hanseniaspora uvarum + C. zemplininia combined with lambda-cyhalothrin or cyantraniliprole, and H. uvarum combined with cyantraniliprole caused significantly higher mortality in winter- compared to summer-morph D. suzukii. Additionally, lambda-cyhalothrin combined with M. pulcherrima + H. uvarum resulted in greater mortality compared to single yeasts, H. uvarum for both summer- and winter-morphs and C. zemplininia for summer-morphs. M. pulcherrima + H. uvarum with spinosad significantly reduced the time-to-kill (50%) of summer-morphs compared to insecticide alone. Most yeast-based baits were comparable in terms of attract-and-kill efficacy to Combi-protec, a commercially available bait, although M. pulcherrima or H. uvarum + C. zemplininia in with cyantraniliprole were less effective. Our study suggests that yeast phagostimulants in attract-and-kill strategies should be adjusted for summer- and winter-morph D. suzukii for more effective control.

16.
Sci Rep ; 12(1): 10382, 2022 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-35725889

RESUMEN

Fungal metabolic volatiles attract Drosophila suzukii which oviposits in ripening fruits, but there are few data describing the fungal microbiomes of commercial fruits susceptible to this insect pest. We tested the hypothesis that fruit type and ripening stage have a significant effect on fruit surface fungal communities using DNA metabarcoding approaches and found strong support for differences in all three fungal community biodiversity metrics analysed (numbers, types, and abundances of taxa). There was an average fivefold greater difference in fungal communities between sites with different fruit types (strawberry, cherry, raspberry, and blueberry) than across fruit developmental stages, demonstrating site and/or fruit type is the greater factor defining fungal community assemblage. The addition of a fungal internal standard (Plectosphaerella cucumerina) showed cherry had relatively static fungal populations across ripening. Raspberry had a greater prevalence of Saccharomycetales yeasts attractive to D. suzukii, including Hanseniaspora uvarum, which aligns with reports that raspberry is among the fruits with greatest susceptibility and attraction to D. suzukii. Greater knowledge of how yeast communities change during fruit maturation and between species or sites may be valuable for developing methods to manipulate fruit microbiomes for use in integrated pest management strategies to control D. suzukii.


Asunto(s)
Arándanos Azules (Planta) , Fragaria , Rubus , Animales , Drosophila/microbiología , Frutas , Control de Insectos/métodos , Levaduras
17.
Insects ; 13(4)2022 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-35447770

RESUMEN

Drosophila suzukii (spotted wing drosophila­SWD) is an economically important pest of soft and stone fruit worldwide. Control relies on broad-spectrum insecticides, which are neither fully effective nor environmentally sustainable. The sterile insect technique (SIT) is a proven, effective and environmentally friendly pest-management tool. Here, we investigated, for the first time, the potential of using SIT to control D. suzukii in field conditions without physical barriers that limit insect invasion. A proprietary method of rearing and irradiation with X-rays was used to obtain males that were > 99% sterile. Sterile males were released twice per week from April to October 2021 on a site in Kent, UK, where everbearing strawberries were grown in open polytunnels. The infestation of wild female D. suzukii was monitored weekly using red sticky traps with dry lure at the treated site and at two similar control sites that did not receive sterile male releases. Releases of sterile males suppressed the wild female D. suzukii population by up to 91% in comparison with the control sites. We thus demonstrated the feasibility of SIT to achieve season-long control of D. suzukii using early, sustained and dynamically targeted releases of sterile males. This provides a promising environmentally friendly method to control this important pest.

18.
Insects ; 13(8)2022 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-36005313

RESUMEN

The worldwide invasive insect pest, Drosophila suzukii Matsumura (spotted-wing Drosophila), lays eggs in soft and stone fruit before harvest. Hatched larvae cause fruit collapse and significant economic losses. Current control methods rely primarily on foliar insecticide applications, which are not sustainable long-term solutions due to regulatory restrictions and the risk of insecticide resistance developing. We showed before that D. suzukii were deterred from laying eggs on artificial media previously visited by its sister species-Drosophila melanogaster. In the current study, laboratory choice test experiments were conducted to identify which D. melanogaster life stage (eggs, larvae, or adult) deterred D. suzukii oviposition. We demonstrated that the presence of live D. melanogaster larvae on the egg-laying media consistently deterred D. suzukii oviposition. Drosophila melanogaster cuticular hydrocarbons (CHCs) were examined as candidate for the oviposition deterrent. CHCs of larval and adult D. melanogaster and D. suzukii were analyzed. In both species, the composition of the CHCs of larvae was similar to that of adults, although quantities present were much lower. Furthermore, the CHC profiles of the two species were markedly different. However, when assayed as deterrents in the laboratory choice test experiment, CHC extracts from D. melanogaster did not deter oviposition by D. suzukii.

19.
Insects ; 12(12)2021 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-34940194

RESUMEN

Growers of organic tree fruit face challenges in controlling some pests more easily suppressed by broad-spectrum insecticides in conventionally managed orchards. In recent decades, there has been a move towards organically growing varieties normally reliant on synthetic chemical pesticides (e.g., Gala), often to meet retailer/consumer demands. This inevitably makes crop protection in organic orchards more challenging, as modern varieties can be less tolerant to pests. In addition, there have been substantial reductions in plant protection product (PPP) approvals, resulting in fewer chemical options available for integrated pest management (IPM)-maintained orchards. Conversely, the organic management of fruit tree pests involves many practices that could be successfully implemented in conventionally grown crops, but which are currently not. These practices could also be more widely used in IPM-maintained orchards, alleviating the reliance on broad-spectrum PPP. In this review, we evaluate organic practices, with a focus on those that could be incorporated into conventional apple and pear production. The topics cover cultural control, biological control, physical and pest modifications. While the pests discussed mainly affect European species, many of the methods could be used to target other global pests for more environmentally sustainable practices.

20.
J Insect Conserv ; 25(3): 531-539, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34720661

RESUMEN

Commercially-reared bumblebee colonies provide pollination services to numerous crop species globally. These colonies may harbour parasites which can spill-over to wild bee species. However, the potential for parasites to spread from wild to commercial bumblebees, which could then lead to parasite spill-back, is poorly understood. To investigate this, parasite-free commercial Bombus terrestris audax colonies, which are used commercially for strawberry pollination, were placed into seasonal strawberry crops for either 6- or 8-week blocks across two key time periods, early spring and early summer. Bumblebees were removed from colonies weekly and screened for the presence of parasites. In the early spring placement, only one parasite, the highly virulent neogregarine Apicystis bombi, was detected at a low prevalence (0.46% across all bees screened). In contrast, all colonies placed in the crop in the early summer became infected. A trypanosome, Crithidia bombi, and A. bombi were the most prevalent parasites across all samples, reaching peak prevalence in screened bees of 39.39% and 18.18% respectively at the end of the experimental period. The prevalence of A. bombi was greater than most UK records from wild bumblebees, suggesting that commercial colonies could enhance levels of A. bombi infection in wild bees through spill-back. Studies on larger geographical scales with different commercial colony densities are required to fully assess spill-back risk. However, seasonal management, to minimise spill-back opportunities, and treatment of commercial colonies to prevent infection, could be implemented to manage the potential risks of parasite spill-back to wild bees. Implications for insect conservation Our results show that commercial bumblebee populations do pick up infections, most likely from wild bees, and that these infections can reach prevalences where they may pose a threat to wild bees via parasite spill-back. More research is required to clarify the extent of this potential threat. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10841-021-00322-x.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA