Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
FASEB J ; 27(6): 2256-69, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23430975

RESUMEN

As a strategy to treat Duchenne muscular dystrophy, we used arginine butyrate, which combines two pharmacological activities: nitric oxide pathway activation, and histone deacetylase inhibition. Continuous intraperitoneal administration to dystrophin-deficient mdx mice resulted in a near 2-fold increase in utrophin (protein homologous to dystrophin) in skeletal muscle, heart, and brain, accompanied by an improvement of the dystrophic phenotype in both adult and newborn mice (45 and 70% decrease in creatine kinase level, respectively; 14% increase in tidal volume, 30% decrease in necrotic area in limb and 23% increase in isometric force). Intermittent administration, as performed in clinical trials, was then used to reduce the frequency of injections and to improve safety. This also enhanced utrophin level around 2-fold (EC50=284 mg/ml) and alleviated the dystrophic phenotype (inverted grid and grip test performance near to wild-type values, creatine kinase level decreased by 50%). Skin biopsies were used to monitor treatment efficacy, instead of invasive muscle biopsies, and this could be done a few days after the start of treatment. A 2-fold increase in utrophin expression was also shown in cultured human myotubes. In vivo and in vitro experiments demonstrated that the drug combination acts synergistically. Together, these data constitute a proof of principle of the beneficial effects of arginine butyrate on muscular dystrophy.


Asunto(s)
Arginina/análogos & derivados , Butiratos/uso terapéutico , Distrofia Muscular Animal/tratamiento farmacológico , Distrofia Muscular de Duchenne/tratamiento farmacológico , Animales , Animales Recién Nacidos , Arginina/administración & dosificación , Arginina/uso terapéutico , Butiratos/administración & dosificación , Células Cultivadas , Sinergismo Farmacológico , Inhibidores de Histona Desacetilasas/uso terapéutico , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos mdx , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/metabolismo , Distrofia Muscular Animal/patología , Distrofia Muscular Animal/fisiopatología , Distrofia Muscular de Duchenne/patología , Distrofia Muscular de Duchenne/fisiopatología , Regulación hacia Arriba/efectos de los fármacos , Utrofina/genética
2.
Respir Physiol Neurobiol ; 165(1): 40-8, 2009 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-18977317

RESUMEN

A mouse strain with a deleted acetylcholinesterase (AChE) gene (AChE knockout) shows a decreased inspiration time and increased tidal volume and ventilation .To investigate the respective roles of AChE in brain and muscle, we recorded respiration by means of whole-body plethysmography in knockout mice with tissue selective deletions in AChE expression. A mouse strain with the anchoring domains of AChE deleted (del E5+6 knockout mice) has very low activity in the brain and neuromuscular junction, but increased monomeric AChE in serum. A mouse strain with deletion of the muscle specific region of AChE (del i1RR knockout mice) exhibits no expression in muscle, but unaltered expression in the central nervous system. Neither strain exhibits the pronounced phenotypic traits observed in the complete AChE knockout strain. A third strain lacking the anchor molecule PRiMA, has no functional AChE and butyrylcholinesterase (BChE) in brain and an unaltered respiratory function. BChE inhibition by bambuterol decreases tidal volume and body temperature in del E5+6 and i1RR knockout strains, but not in PRiMA deletion or wild-type controls. We find that: (1) deletion of the full AChE gene is required for a pronounced alteration in respiratory phenotype, (2) BChE is involved in respiratory muscles contraction and temperature control in del E5+6 and i1RR knockout mice, and (3) AChE expression requiring a gene product splice to either exons 5 and 6 or regulated by intron1 influences temperature control.


Asunto(s)
Acetilcolinesterasa/metabolismo , Encéfalo/enzimología , Regulación de la Expresión Génica/fisiología , Músculos/enzimología , Respiración/genética , Acetilcolinesterasa/deficiencia , Análisis de Varianza , Animales , Temperatura Corporal/genética , Encéfalo/efectos de los fármacos , Broncodilatadores/farmacología , Butirilcolinesterasa/metabolismo , Exones/genética , Femenino , Regulación de la Expresión Génica/genética , Hipercapnia/genética , Hipercapnia/fisiopatología , Hipoxia/genética , Hipoxia/fisiopatología , Masculino , Ratones , Ratones Noqueados , Músculos/efectos de los fármacos , Pletismografía Total/métodos , Ventilación Pulmonar/genética , Respiración/efectos de los fármacos , Eliminación de Secuencia/genética , Terbutalina/análogos & derivados , Terbutalina/farmacología , Volumen de Ventilación Pulmonar/genética
3.
J Neurosci ; 26(17): 4660-71, 2006 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-16641247

RESUMEN

Neurotransmitter glutamate has been thought to derive mainly from glutamine via the action of glutaminase type 1 (GLS1). To address the importance of this pathway in glutamatergic transmission, we knocked out GLS1 in mice. The insertion of a STOP cassette by homologous recombination produced a null allele that blocked transcription, encoded no immunoreactive protein, and abolished GLS1 enzymatic activity. Null mutants were slightly smaller, were deficient in goal-directed behavior, hypoventilated, and died in the first postnatal day. No gross or microscopic defects were detected in peripheral organs or in the CNS. In cultured neurons from the null mutants, miniature EPSC amplitude and duration were normal; however, the amplitude of evoked EPSCs decayed more rapidly with sustained 10 Hz stimulation, consistent with an observed reduction in depolarization-evoked glutamate release. Because of this activity-dependent impairment in glutamatergic transmission, we surmised that respiratory networks, which require temporal summation of synaptic input, would be particularly affected. We found that the amplitude of inspirations was decreased in vivo, chemosensitivity to CO2 was severely altered, and the frequency of pacemaker activity recorded in the respiratory generator in the pre-Bötzinger complex, a glutamatergic brainstem network that can be isolated in vitro, was increased. Our results show that although alternate pathways to GLS1 glutamate synthesis support baseline glutamatergic transmission, the GLS1 pathway is essential for maintaining the function of active synapses, and thus the mutation is associated with impaired respiratory function, abnormal goal-directed behavior, and neonatal demise.


Asunto(s)
Encéfalo/enzimología , Ácido Glutámico/metabolismo , Glutaminasa/deficiencia , Hipoventilación/fisiopatología , Riñón/enzimología , Trastornos Mentales/fisiopatología , Transmisión Sináptica , Animales , Animales Recién Nacidos , Objetivos , Ratones , Ratones Noqueados , Vías Nerviosas/metabolismo , Trastornos Respiratorios , Mecánica Respiratoria , Tasa de Supervivencia
4.
Pharmacol Biochem Behav ; 80(1): 53-61, 2005 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-15652380

RESUMEN

We investigated the contributions of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibition to the respiratory dysfunction produced by organophosphates in mice which were adapted or not to low AChE activity. Effects of acute selective inhibition of AChE and BChE on ventilation measured by whole-body plethysmography were compared in mice with either normal AChE activity (wild-type), or mice adapted to a null AChE activity (homozygotes for AChE gene deletion) or adapted to an intermediate level of activity (heterozygotes). In wild-type mice acute reduction of AChE by Huperzine A (1 mg/kg) to the level found in asymptomatic heterozygotes, induced tremors but no respiratory depression, whereas the same dose of Huperzine in heterozygote animals further reduced AChE activity, increased tidal volume (V(T)) and decreased breathing frequency (f(R)). A lethal dose of Huperzine in wild-type mice augmented these respiratory effects, but was ineffective in homozygotes. BChE inhibition by bambuterol was ineffective in wild-type mice and heterozygotes, decreased V(T) in homozygotes adapted to null AChE activity but increased V(T) in wild-type mice acutely treated with Huperzine, also aggravating the cholinergic syndrome. We conclude that: (1) Huperzine does not perturb respiration at a dose inhibiting 40% of AChE, and at a lethal dose does not affect any other enzyme important for respiration; (2) Respiratory function is more sensitive to anticholinesterases in heterozygotes than in wild-type mice; (3) BChE may play distinct roles in respiratory function, because its inhibition has opposite effects on tidal volume depending on whether the mouse has adapted to null AChE or whether AChE has been lowered acutely; (4) BChE inhibition may contribute to the respiratory toxicity of organophosphates.


Asunto(s)
Acetilcolinesterasa/metabolismo , Butirilcolinesterasa/metabolismo , Inhibidores de la Colinesterasa/farmacología , Respiración/efectos de los fármacos , Terbutalina/análogos & derivados , Acetilcolinesterasa/deficiencia , Acetilcolinesterasa/genética , Animales , Femenino , Masculino , Ratones , Ratones Noqueados , Terbutalina/farmacología
5.
Neurosci Lett ; 323(2): 89-92, 2002 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-11950500

RESUMEN

We investigated a possible involvement of the prion protein in ventilatory control in four groups of mice, those deficient for the prion protein (PrP(c)), those overexpressing the prion protein, and two groups of genetically and age-matched controls. Ventilatory patterns of unrestrained mice were measured in a whole-body plethysmograph. Between each genotype and its control, we compared ventilation at rest and the ventilatory response to moderate hypoxia (10-12% O2), hyperoxia and hyperoxic hypercapnia. Mice lacking or overexpressing PrP(c) and their respective controls showed similar ventilatory patterns at rest and similar chemosensory responses when awake and under urethane anesthesia. Our results do not support the view that PrP(c) may play any significant role in basal ventilation or in the chemosensory ventilatory control of adult mice.


Asunto(s)
Proteínas PrPC/biosíntesis , Proteínas PrPC/genética , Ventilación Pulmonar/genética , Animales , Femenino , Hipoxia Encefálica/genética , Hipoxia Encefálica/metabolismo , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Proteínas PrPC/deficiencia , Ventilación Pulmonar/fisiología
6.
Respir Physiol Neurobiol ; 139(3): 237-45, 2004 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-15122990

RESUMEN

Acetylcholine (ACh) acting through muscarinic receptors is thought to be involved in the control of breathing, notably in central and peripheral chemosensory afferents and in regulations related to sleep-wake states. By using whole-body plethysmography, we compared baseline breathing at rest and ventilatory responses to acute exposure (5 min) to moderate hypoxia (10% O(2)) and hypercapnia (3 and 5% CO(2)) in mice lacking either the M(1) or the M(3) muscarinic receptor, and in wild-type matched controls. M(1) knockout mice showed normal minute ventilation (V(E)) but elevated tidal volume (V(T)) at rest, and normal chemosensory ventilatory responses to hypoxia and hypercapnia. M(3) knockout mice had elevated V(E) and V(T) at rest, a reduced V(T) response slope to hypercapnia, and blunted V(E) and frequency responses to hypoxia. The results suggest that M(1) and M(3) muscarinic receptors play significant roles in the regulation of tidal volume at rest and that the afferent pathway originating from peripheral chemoreceptors involves M(3) receptors.


Asunto(s)
Hipercapnia/fisiopatología , Hipoxia/fisiopatología , Ventilación Pulmonar/fisiología , Receptor Muscarínico M1/fisiología , Receptor Muscarínico M3/fisiología , Respiración/genética , Animales , Temperatura Corporal/genética , Temperatura Corporal/fisiología , Peso Corporal/genética , Peso Corporal/fisiología , Dióxido de Carbono/farmacología , Relación Dosis-Respuesta a Droga , Ratones , Ratones Endogámicos , Ratones Noqueados , Oxígeno/farmacología , Pletismografía Total/métodos , Ventilación Pulmonar/efectos de los fármacos , Receptor Muscarínico M1/genética , Receptor Muscarínico M3/genética , Respiración/efectos de los fármacos , Volumen de Ventilación Pulmonar/genética , Volumen de Ventilación Pulmonar/fisiología
9.
Eur J Neurosci ; 18(6): 1419-27, 2003 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-14511322

RESUMEN

Cholinergic neurotransmission ensures muscle contraction and plays a role in the regulation of respiratory pattern in the brainstem. Inactivation of acetylcholinesterase (AChE) by organophosphates produces respiratory failure but AChE knockout mice survive to adulthood. Respiratory adaptation mechanisms which ensure survival of these mice were examined in vivo by whole body plethysmography and in vitro in the neonatal isolated brainstem preparation. AChE-/- mice presented no AChE activity but unaffected butyrylcholinesterase (BChE) activity. In vivo, bambuterol (50-500 microg/kg s.c.) decreased BChE activity peripherally but not in brain tissue and induced apnea and death in adult and neonate AChE-/- mice without affecting littermate AChE+/+ and +/- animals. In vitro, bath-applied bambuterol (1-100 microm) and tetraisopropylpyrophosphoramide (10-100 microm) decreased BChE activity in the brainstem but did not perturb central respiratory activity recorded from spinal nerve rootlets. In vitro, the cholinergic agonists muscarine (50-100 microm) and nicotine (0.5-10 microm) induced tonic activity in respiratory motoneurons and increased the frequency of inspiratory bursts in AChE+/+ and +/- animals. These effects were greatly attenuated in AChE-/- animals. The results suggest that, in mice lacking AChE, (i) BChE becomes essential for survival peripherally but plays no critical role in central rhythm-generating structures and (ii) a major adaptive mechanism for respiratory survival is the down-regulated response of central respiratory-related neurons and motoneurons to muscarinic and nicotinic agonists.


Asunto(s)
Acetilcolinesterasa/metabolismo , Tronco Encefálico/fisiopatología , Respiración , Terbutalina/análogos & derivados , Acetilcolinesterasa/sangre , Acetilcolinesterasa/deficiencia , Acetilcolinesterasa/genética , Potenciales de Acción/efectos de los fármacos , Animales , Animales Recién Nacidos , Apnea/fisiopatología , Encéfalo/efectos de los fármacos , Encéfalo/enzimología , Broncodilatadores/farmacología , Butirilcolinesterasa/sangre , Butirilcolinesterasa/metabolismo , Inhibidores de la Colinesterasa/farmacología , Relación Dosis-Respuesta a Droga , Femenino , Genotipo , Técnicas In Vitro , Masculino , Ratones , Ratones Noqueados , Muscarina/farmacología , Agonistas Muscarínicos/farmacología , Músculos/efectos de los fármacos , Músculos/enzimología , Nicotina/farmacología , Agonistas Nicotínicos/farmacología , Pletismografía/instrumentación , Pletismografía/métodos , Ventilación Pulmonar/efectos de los fármacos , Respiración/efectos de los fármacos , Terbutalina/farmacología , Tetraisopropilpirofosfamida/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA