Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Reprod Biol Endocrinol ; 22(1): 60, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38778396

RESUMEN

BACKGROUND: Reproduction in women is at risk due to exposure to chemicals that can disrupt the endocrine system during different windows of sensitivity throughout life. Steroid hormone levels are fundamental for the normal development and function of the human reproductive system, including the ovary. This study aims to elucidate steroidogenesis at different life-stages in human ovaries. METHODS: We have developed a sensitive and specific LC-MS/MS method for 21 important steroid hormones and measured them at different life stages: in media from cultures of human fetal ovaries collected from elective terminations of normally progressing pregnancy and in media from adult ovaries from Caesarean section patients, and follicular fluid from women undergoing infertility treatment. Statistically significant differences in steroid hormone levels and their ratios were calculated with parametric tests. Principal component analysis (PCA) was applied to explore clustering of the ovarian-derived steroidogenic profiles. RESULTS: Comparison of the 21 steroid hormones revealed clear differences between the various ovarian-derived steroid profiles. Interestingly, we found biosynthesis of both canonical and "backdoor" pathway steroid hormones and corticosteroids in first and second trimester fetal and adult ovarian tissue cultures. 17α-estradiol, a less potent naturally occurring isomer of 17ß-estradiol, was detected only in follicular fluid. PCA of the ovarian-derived profiles revealed clusters from: adult ovarian tissue cultures with relatively high levels of androgens; first trimester and second trimester fetal ovarian tissue cultures with relatively low estrogen levels; follicular fluid with the lowest androgens, but highest corticosteroid, progestogen and estradiol levels. Furthermore, ratios of specific steroid hormones showed higher estradiol/ testosterone and estrone/androstenedione (indicating higher CYP19A1 activity, p < 0.01) and higher 17-hydroxyprogesterone/progesterone and dehydroepiandrosterone /androstenedione (indicating higher CYP17A1 activity, p < 0.01) in fetal compared to adult ovarian tissue cultures. CONCLUSIONS: Human ovaries demonstrate de novo synthesis of non-canonical and "backdoor" pathway steroid hormones and corticosteroids. Elucidating the steroid profiles in human ovaries improves our understanding of physiological, life-stage dependent, steroidogenic capacity of ovaries and will inform mechanistic studies to identify endocrine disrupting chemicals that affect female reproduction.


Asunto(s)
Feto , Ovario , Humanos , Femenino , Ovario/metabolismo , Adulto , Embarazo , Feto/metabolismo , Hormonas Esteroides Gonadales/biosíntesis , Hormonas Esteroides Gonadales/metabolismo , Hormonas Esteroides Gonadales/análisis , Espectrometría de Masas en Tándem , Líquido Folicular/metabolismo , Líquido Folicular/química , Estradiol/metabolismo , Cromatografía Liquida
2.
Reproduction ; 163(2): 119-131, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-35015698

RESUMEN

Exposure of the fetal testis to numerous individual environmental chemicals (ECs) is frequently associated with dysregulated development, leading to impaired adult reproductive competence. However, 'real-life' exposure involves complex mixtures of ECs. Here we test the consequences, for the male fetus, of exposing pregnant ewes to EC mixtures derived from pastures treated with biosolids fertiliser (processed human sewage). Fetal testes from continuously exposed ewes were either unaffected at day 80 or exhibited a reduced area of testis immunostained for CYP17A1 protein at day 140. Fetal testes from day 140 pregnant ewes that were exposed transiently for 80-day periods during early (0-80 days), mid (30-110 days), or late (60-140 days) pregnancy had fewer Sertoli cells and reduced testicular area stained for CYP17A1. Male fetuses from ewes exposed during late pregnancy also exhibited reduced fetal body, adrenal and testis mass, anogenital distance, and lowered testosterone; collectively indicative of an anti-androgenic effect. Exposure limited to early gestation induced more testis transcriptome changes than observed for continuously exposed day 140 fetuses. These data suggest that a short period of EC exposure does not allow sufficient time for the testis to adapt. Consequently, testicular transcriptomic changes induced during the first 80 days of gestation may equate with phenotypic effects observed at day 140. In contrast, relatively fewer changes in the testis transcriptome in fetuses exposed continuously to ECs throughout gestation are associated with less severe consequences. Unless corrected by or during puberty, these differential effects would predictably have adverse outcomes for adult testicular function and fertility.


Asunto(s)
Oveja Doméstica , Testículo , Animales , Femenino , Feto , Humanos , Masculino , Embarazo , Aguas del Alcantarillado/efectos adversos , Ovinos , Testículo/metabolismo , Testosterona/metabolismo
3.
PLoS Biol ; 17(2): e3000002, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30763313

RESUMEN

Masculinization of the external genitalia in humans is dependent on formation of 5α-dihydrotestosterone (DHT) through both the canonical androgenic pathway and an alternative (backdoor) pathway. The fetal testes are essential for canonical androgen production, but little is known about the synthesis of backdoor androgens, despite their known critical role in masculinization. In this study, we have measured plasma and tissue levels of endogenous steroids in second trimester human fetuses using multidimensional and high-resolution mass spectrometry. Results show that androsterone is the principal backdoor androgen in the male fetal circulation and that DHT is undetectable (<1 ng/mL), while in female fetuses, there are significantly lower levels of androsterone and testosterone. In the male, intermediates in the backdoor pathway are found primarily in the placenta and fetal liver, with significant androsterone levels also in the fetal adrenal. Backdoor intermediates, including androsterone, are only present at very low levels in the fetal testes. This is consistent with transcript levels of enzymes involved in the alternate pathway (steroid 5α-reductase type 1 [SRD5A1], aldo-keto reductase type 1C2 [AKR1C2], aldo-keto reductase type 1C4 [AKR1C4], cytochrome P450 17A1 [CYP17A1]), as measured by quantitative PCR (qPCR). These data identify androsterone as the predominant backdoor androgen in the human fetus and show that circulating levels are sex dependent, but also that there is little de novo synthesis in the testis. Instead, the data indicate that placental progesterone acts as substrate for synthesis of backdoor androgens, which occurs across several tissues. Masculinization of the human fetus depends, therefore, on testosterone and androsterone synthesis by both the fetal testes and nongonadal tissues, leading to DHT formation at the genital tubercle. Our findings also provide a solid basis to explain why placental insufficiency is associated with disorders of sex development in humans.


Asunto(s)
Andrógenos/biosíntesis , Feto/fisiología , Masculinidad , Dihidrotestosterona/sangre , Dihidrotestosterona/metabolismo , Femenino , Humanos , Masculino , Redes y Vías Metabólicas , Ovario/metabolismo , Embarazo , Segundo Trimestre del Embarazo/sangre , ARN Mensajero/genética , ARN Mensajero/metabolismo , Testículo/metabolismo
4.
Int J Mol Sci ; 22(13)2021 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-34206462

RESUMEN

Human fetal gonads acquire endocrine steroidogenic capabilities early during their differentiation. Genetic studies show that this endocrine function plays a central role in the sexually dimorphic development of the external genitalia during fetal development. When this endocrine function is dysregulated, congenital malformations and pathologies are the result. In this review, we explain how the current knowledge of steroidogenesis in human fetal gonads has benefited from both the technological advances in steroid measurements and the assembly of detailed knowledge of steroidogenesis machinery and its expression in human fetal gonads. We summarise how the conversion of radiolabelled steroid precursors, antibody-based assays, mass spectrometry, ultrastructural studies, and the in situ labelling of proteins and mRNA have all provided complementary information. In this review, our discussion goes beyond the debate on recommendations concerning the best choice between the different available technologies, and their degrees of reproducibility and sensitivity. The available technologies and techniques can be used for different purposes and, as long as all quality controls are rigorously employed, the question is how to maximise the generation of robust, reproducible data on steroid hormones and their crucial roles in human fetal development and subsequent functions.


Asunto(s)
Feto/metabolismo , Hormonas Esteroides Gonadales/metabolismo , Gónadas/metabolismo , Investigación , Femenino , Humanos , Inmunoensayo , Masculino , Espectrometría de Masas , Ovario/metabolismo , Ovario/ultraestructura , Investigación/tendencias , Desarrollo Sexual/genética , Testículo/metabolismo , Testículo/ultraestructura
5.
Hum Reprod ; 35(7): 1702-1710, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32558884

RESUMEN

STUDY QUESTION: Does having a male co-twin influence the female twin's reproductive outcomes? SUMMARY ANSWER: Women with a male co-twin had the same chances of being pregnant and having children compared to same-sex twin pairs. WHAT IS KNOWN ALREADY: According to the twin testosterone transfer (TTT) hypothesis, in an opposite-sex twin pregnancy, testosterone transfer from the male to the female co-twin occurs. A large body of literature supports the negative impact of prenatal testosterone exposure on female's reproductive health in animal models; however, evidence from human studies remains controversial. STUDY DESIGN, SIZE, DURATION: This cohort study included all dizygotic female twins in the Aberdeen Maternity and Neonatal Databank (Scotland) born before 1 January 1979. The 317 eligible women were followed up for 40 years for any pregnancies and the outcome of those pregnancies recorded in the same database. PARTICIPANTS/MATERIALS, SETTING, METHODS: Fertility outcomes (number of pregnancies, number of livebirths and age at first pregnancy) were compared between women with a male co-twin (exposed group, n = 151) and those with a female co-twin (unexposed group, n = 166). Population averaged models were used to estimate odds ratios (OR) and 95% CI for all outcomes with adjusting for potential confounders. MAIN RESULTS AND THE ROLE OF CHANCE: There were no differences in chances of having pregnancies (adj. OR 1.33; 95% CI 0.72, 2.45) and livebirths (adj. OR 1.22; 95% CI 0.68, 2.18) between women from same-sex and opposite-sex twin pairs. Women with a male co-twin were more likely to smoke during pregnancy and, in the unadjusted model, were younger at their first pregnancy (OR 2.13; 95% CI 1.21, 3.75). After adjusting for confounding variables (year of birth and smoking status) the latter finding was no longer significant (OR 1.67; 95% CI 0.90, 3.20). LIMITATIONS, REASONS FOR CAUTION: The dataset was relatively small. For women without a pregnancy recorded in the databank, we assumed that they had not been pregnant. WIDER IMPLICATIONS OF THE FINDINGS: Despite the evidence from animal studies concerning the adverse effects of prenatal testosterone exposure on female health, our results do not support the TTT hypothesis. The finding that women with a male co-twin are more likely to smoke during pregnancy highlights the importance of considering post-socialisation and social effects in twin studies. STUDY FUNDING/COMPETING INTEREST(S): European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie project PROTECTED (grant agreement No. 722634) and FREIA project (grant agreement No. 825100). No competing interests. TRIAL REGISTRATION NUMBER: N/A.


Asunto(s)
Testosterona , Gemelos Dicigóticos , Niño , Estudios de Cohortes , Femenino , Humanos , Masculino , Embarazo , Embarazo Gemelar , Escocia , Gemelos Dicigóticos/genética
6.
Hum Reprod ; 35(5): 1099-1119, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32412604

RESUMEN

STUDY QUESTION: Which transcriptional program triggers sex differentiation in bipotential gonads and downstream cellular events governing fetal testis and ovary development in humans? SUMMARY ANSWER: The characterization of a dynamically regulated protein-coding and non-coding transcriptional landscape in developing human gonads of both sexes highlights a large number of potential key regulators that show an early sexually dimorphic expression pattern. WHAT IS KNOWN ALREADY: Gonadal sex differentiation is orchestrated by a sexually dimorphic gene expression program in XX and XY developing fetal gonads. A comprehensive characterization of its non-coding counterpart offers promising perspectives for deciphering the molecular events underpinning gonad development and for a complete understanding of the etiology of disorders of sex development in humans. STUDY DESIGN, SIZE, DURATION: To further investigate the protein-coding and non-coding transcriptional landscape during gonad differentiation, we used RNA-sequencing (RNA-seq) and characterized the RNA content of human fetal testis (N = 24) and ovaries (N = 24) from 6 to 17 postconceptional week (PCW), a key period in sex determination and gonad development. PARTICIPANTS/MATERIALS, SETTING, METHODS: First trimester fetuses (6-12 PCW) and second trimester fetuses (13-14 and 17 PCW) were obtained from legally induced normally progressing terminations of pregnancy. Total RNA was extracted from whole human fetal gonads and sequenced as paired-end 2 × 50 base reads. Resulting sequences were mapped to the human genome, allowing for the assembly and quantification of corresponding transcripts. MAIN RESULTS AND THE ROLE OF CHANCE: This RNA-seq analysis of human fetal testes and ovaries at seven key developmental stages led to the reconstruction of 22 080 transcripts differentially expressed during testicular and/or ovarian development. In addition to 8935 transcripts displaying sex-independent differential expression during gonad development, the comparison of testes and ovaries enabled the discrimination of 13 145 transcripts that show a sexually dimorphic expression profile. The latter include 1479 transcripts differentially expressed as early as 6 PCW, including 39 transcription factors, 40 long non-coding RNAs and 20 novel genes. Despite the use of stringent filtration criteria (expression cut-off of at least 1 fragment per kilobase of exon model per million reads mapped, fold change of at least 2 and false discovery rate adjusted P values of less than <1%), the possibility of assembly artifacts and of false-positive differentially expressed transcripts cannot be fully ruled out. LARGE-SCALE DATA: Raw data files (fastq) and a searchable table (.xlss) containing information on genomic features and expression data for all refined transcripts have been submitted to the NCBI GEO under accession number GSE116278. LIMITATIONS, REASONS FOR CAUTION: The intrinsic nature of this bulk analysis, i.e. the sequencing of transcripts from whole gonads, does not allow direct identification of the cellular origin(s) of the transcripts characterized. Potential cellular dilution effects (e.g. as a result of distinct proliferation rates in XX and XY gonads) may account for a few of the expression profiles identified as being sexually dimorphic. Finally, transcriptome alterations that would result from exposure to pre-abortive drugs cannot be completely excluded. Although we demonstrated the high quality of the sorted cell populations used for experimental validations using quantitative RT-PCR, it cannot be totally excluded that some germline expression may correspond to cell contamination by, for example, macrophages. WIDER IMPLICATIONS OF THE FINDINGS: For the first time, this study has led to the identification of 1000 protein-coding and non-coding candidate genes showing an early, sexually dimorphic, expression pattern that have not previously been associated with sex differentiation. Collectively, these results increase our understanding of gonad development in humans, and contribute significantly to the identification of new candidate genes involved in fetal gonad differentiation. The results also provide a unique resource that may improve our understanding of the fetal origin of testicular and ovarian dysgenesis syndromes, including cryptorchidism and testicular cancers. STUDY FUNDING/COMPETING INTEREST(S): This work was supported by the French National Institute of Health and Medical Research (Inserm), the University of Rennes 1, the French School of Public Health (EHESP), the Swiss National Science Foundation [SNF n° CRS115_171007 to B.J.], the French National Research Agency [ANR n° 16-CE14-0017-02 and n° 18-CE14-0038-02 to F.C.], the Medical Research Council [MR/L010011/1 to P.A.F.] and the European Community's Seventh Framework Programme (FP7/2007-2013) [under grant agreement no 212885 to P.A.F.] and from the European Union's Horizon 2020 Research and Innovation Programme [under grant agreement no 825100 to P.A.F. and S.M.G.]. There are no competing interests related to this study.


Asunto(s)
Diferenciación Sexual , Testículo , Femenino , Feto , Gónadas , Humanos , Masculino , Ovario , Embarazo , Diferenciación Sexual/genética
7.
Arch Toxicol ; 94(4): 1241-1250, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32221642

RESUMEN

Disruption of sensitive stages of ovary development during fetal and perinatal life can have severe and life-long consequences for a woman's reproductive life. Exposure to endocrine disrupting chemicals may affect ovarian development, leading to subsequent reproductive disorders. Here, we investigated the effect of early life exposure to defined mixtures of human-relevant endocrine disrupting chemicals on the rat ovary. We aimed to identify molecular events involved in pathogenesis of ovarian dysgenesis syndrome that have potential for future adverse outcome pathway development. We therefore focused on the ovarian proteome. Rats were exposed to a mixture of phthalates, pesticides, UV-filters, bisphenol A, butyl-paraben, and paracetamol during gestation and lactation. The chemicals were tested together or in subgroups of chemicals with anti-androgenic or estrogenic potentials at doses 450-times human exposure. Paracetamol was tested separately, at a dose of 360 mg/kg. Using shotgun proteomics on ovaries from pup day 17 offspring, we observed exposure effects on the proteomes. Nine proteins were affected in more than one exposure group and of these, we conclude that calretinin is a potential key event biomarker of early endocrine disruption in the ovary.


Asunto(s)
Disruptores Endocrinos/toxicidad , Contaminantes Ambientales/toxicidad , Antagonistas de Andrógenos/toxicidad , Animales , Compuestos de Bencidrilo/toxicidad , Biomarcadores/metabolismo , Calbindina 2/metabolismo , Femenino , Humanos , Lactancia , Parabenos , Fenoles/toxicidad , Embarazo , Efectos Tardíos de la Exposición Prenatal , Ratas , Ratas Wistar , Reproducción
8.
Arch Toxicol ; 94(10): 3359-3379, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32638039

RESUMEN

Modern living challenges female reproductive health. We are witnessing a rise in reproductive disorders and drop in birth rates across the world. The reasons for these manifestations are multifaceted and most likely include continuous exposure to an ever-increasing number of chemicals. The cause-effect relationships between chemical exposure and female reproductive disorders, however, have proven problematic to determine. This has made it difficult to assess the risks chemical exposures pose to a woman's reproductive development and function. To address this challenge, this review uses the adverse outcome pathway (AOP) concept to summarize current knowledge about how chemical exposure can affect female reproductive health. We have a special focus on effects on the ovaries, since they are essential for lifelong reproductive health in women, being the source of both oocytes and several reproductive hormones, including sex steroids. The AOP framework is widely accepted as a new tool for toxicological safety assessment that enables better use of mechanistic knowledge for regulatory purposes. AOPs equip assessors and regulators with a pragmatic network of linear cause-effect relationships, enabling the use of a wider range of test method data in chemical risk assessment and regulation. Based on current knowledge, we propose ten putative AOPs relevant for female reproductive disorders that can be further elaborated and potentially be included in the AOPwiki. This effort is an important step towards better safeguarding the reproductive health of all girls and women.


Asunto(s)
Rutas de Resultados Adversos , Seguridad Química , Exposición Materna , Ovario/efectos de los fármacos , Salud Reproductiva , Animales , Enfermedades del Sistema Endocrino/inducido químicamente , Femenino , Humanos , Ratones , Enfermedades del Ovario/inducido químicamente , Ovario/fisiopatología , Embarazo , Medición de Riesgo , Pruebas de Toxicidad
9.
Int J Mol Sci ; 21(9)2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-32370092

RESUMEN

Currently available test methods are not well-suited for the identification of chemicals that disturb hormonal processes involved in female reproductive development and function. This renders women's reproductive health at increasing risk globally, which, coupled with increasing incidence rates of reproductive disorders, is of great concern. A woman's reproductive health is largely established during embryonic and fetal development and subsequently matures during puberty. The endocrine system influences development, maturation, and function of the female reproductive system, thereby making appropriate hormone levels imperative for correct functioning of reproductive processes. It is concerning that the effects of human-made chemicals on the endocrine system and female reproductive health are poorly addressed in regulatory chemical safety assessment, partly because adequate test methods are lacking. Our EU-funded project FREIA aims to address this need by increasing understanding of how endocrine disrupting chemicals (EDCs) can impact female reproductive health. We will use this information to provide better test methods that enable fit-for-purpose chemical regulation and then share our knowledge, promote a sustainable society, and improve the reproductive health of women globally.


Asunto(s)
Disruptores Endocrinos/farmacología , Reproducción/efectos de los fármacos , Salud Reproductiva , Animales , Sistema Endocrino/efectos de los fármacos , Exposición a Riesgos Ambientales , Contaminantes Ambientales/efectos adversos , Femenino , Humanos , Pubertad/efectos de los fármacos , Medición de Riesgo , Factores de Riesgo
10.
BMC Med ; 16(1): 194, 2018 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-30348172

RESUMEN

BACKGROUND: Maternal lifestyle factors, including smoking and increased body weight, increase risks of adult diseases such as metabolic syndrome and infertility. The fetal thyroid gland is essential for the control of fetal metabolic rate, cardiac output, and brain development. Altered fetal thyroid function may contribute to increased disease onset later in life. Here, we investigated the impact of maternal smoking and high maternal weight on human fetal thyroid function during the second trimester. METHODS: Thyroid glands and plasma were collected from fetuses electively terminated in the second trimester (normally progressing pregnancies). Plasma total triiodothyronine (T3) and total thyroxine (T4) were measured by solid-phase extraction-liquid chromatography-tandem mass spectrometry. Fetal plasma thyroid-stimulating hormone (TSH) levels were measured using a multiplex assay for human pituitary hormones. Histology and immunolocalization of thyroid developmental markers were examined in thyroid sections. Transcript levels of developmental, functional, apoptotic, and detoxification markers were measured by real-time PCR. Statistical analyses were performed using multivariate linear regression models with fetal age, sex, and maternal smoking or maternal body mass index (BMI) as covariates. RESULTS: Maternal smoking was associated with significant changes in fetal plasma T4 and TSH levels during the second trimester. Smoke-exposed thyroids had reduced thyroid GATA6 and NKX2-1 transcript levels and altered developmental trajectories for ESR2 and AHR transcript levels. Maternal BMI > 25 was associated with increased fetal thyroid weight, increased plasma TSH levels, and abnormal thyroid histology in female fetuses. Normal developmental changes in AHR and ESR1 transcript expression were also abolished in fetal thyroids from mothers with BMI > 25. CONCLUSIONS: For the first time, we show that maternal smoking and high maternal BMI are associated with disturbed fetal thyroid gland development and endocrine function in a sex-specific manner during the second trimester. These findings suggest that predisposition to post-natal disease is mediated, in part, by altered fetal thyroid gland development.


Asunto(s)
Índice de Masa Corporal , Obesidad/complicaciones , Fumar/efectos adversos , Glándula Tiroides/crecimiento & desarrollo , Adulto , Femenino , Humanos , Embarazo
11.
BMC Med ; 16(1): 23, 2018 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-29429410

RESUMEN

BACKGROUND: Human fetal adrenal glands are highly active and, with the placenta, regulate circulating progesterone, estrogen and corticosteroids in the fetus. At birth the adrenals are essential for neonate salt retention through secretion of aldosterone, while adequate glucocorticoids are required to prevent adrenal insufficiency. The objective of this study was to carry out the first comprehensive analysis of adrenal steroid levels and steroidogenic enzyme expression in normal second trimester human fetuses. METHODS: This was an observational study of steroids, messenger RNA transcripts and proteins in adrenals from up to 109 second trimester fetuses (11 weeks to 21 weeks) at the Universities of Aberdeen and Glasgow. The study design was balanced to show effects of maternal smoking. RESULTS: Concentrations of 19 intra-adrenal steroids were quantified using liquid chromatography and mass spectrometry. Pregnenolone was the most abundant steroid while levels of 17α-hydroxyprogesterone, dehydroepiandrosterone sulphate (DHEAS) and progesterone were also high. Cortisol was present in all adrenals, but aldosterone was undetected and Δ4 androgens were low/undetected. CYP17A1, CYP21A2 and CYP11A1 were all highly expressed and the proteins localized to the adrenal fetal zone. There was low-level expression of HSD3B and CYP11B2, with HSD3B located mainly in the definitive zone. Maternal smoking altered fetal plasma adrenocorticotropic hormone (ACTH) (P = 0.052) and intra-adrenal progesterone, 17α-hydroxyprogesterone and 16α-hydroxyprogesterone, but not plasma or intra-adrenal cortisol, or intra-adrenal DHEAS. Fetal adrenal GATA6 and NR5A1 were increased by maternal smoking. CONCLUSIONS: The human fetal adrenal gland produces cortisol but very low levels of Δ4 androgens and no detectable aldosterone throughout the second trimester. The presence of cortisol in fetal adrenals suggests that adrenal regulation of circulating fetal ACTH remains a factor in development of congenital adrenal hyperplasia during the second trimester, while a relative lack of aldosterone explains the salt-wasting disorders frequently seen in extreme pre-term neonates. Finally, maternal smoking may alter fetal adrenal sensitivity to ACTH, which could have knock-on effects on post-natal health.


Asunto(s)
Glándulas Suprarrenales/metabolismo , Aldosterona/metabolismo , Feto/efectos de los fármacos , Adulto , Aldosterona/análisis , Femenino , Humanos , Embarazo , Segundo Trimestre del Embarazo , Adulto Joven
12.
Biol Reprod ; 96(4): 733-742, 2017 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-28339967

RESUMEN

The placenta is a critical organ during pregnancy, essential for the provision of an optimal intrauterine environment, with fetal survival, growth, and development relying on correct placental function. It must allow nutritional compounds and relevant hormones to pass into the fetal bloodstream and metabolic waste products to be cleared. It also acts as a semipermeable barrier to potentially harmful chemicals, both endogenous and exogenous. Transporter proteins allow for bidirectional transport and are found in the syncytiotrophoblast of the placenta and endothelium of fetal capillaries. The major transporter families in the human placenta are ATP-binding cassette (ABC) and solute carrier (SLC), and insufficiency of these transporters may lead to deleterious effects on the fetus. Transporter expression levels are gestation-dependent and this is of considerable clinical interest as levels of drug resistance may be altered from one trimester to the next. This highlights the importance of these transporters in mediating correct and timely transplacental passage of essential compounds but also for efflux of potentially toxic drugs and xenobiotics. We review the current literature on placental molecular transporters with respect to their localization and ontogeny, the influence of fetal sex, and the relevance of animal models. We conclude that a paucity of information exists, and further studies are required to unlock the enigma of this dynamic organ.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Proteínas de Transporte de Membrana/metabolismo , Placenta/metabolismo , Femenino , Edad Gestacional , Humanos , Masculino , Proteínas de Transporte de Membrana/genética , Embarazo
13.
Arch Toxicol ; 91(11): 3645, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28980015

RESUMEN

During manuscript proofing, the following sentence was not deleted in the section "Results" at the end of the paragraph: "Both male and female hepatocytes responded in a similar fashion to cotinine, whereas male hepatocyte function was more sensitive to chrysene, fluorene and naphthalene than female hepatocytes".

14.
Arch Toxicol ; 91(11): 3633-3643, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28510779

RESUMEN

The liver is a dynamic organ which is both multifunctional and highly regenerative. A major role of the liver is to process both endo and xenobiotics. Cigarettes are an example of a legal and widely used drug which can cause major health problems for adults and constitute a particular risk to the foetus, if the mother smokes during pregnancy. Cigarette smoke contains a complex mixture of thousands of different xenobiotics, including nicotine and polycyclic aromatic hydrocarbons. These affect foetal development in a sex-specific manner, inducing sex-dependant molecular responses in different organs. To date, the effect of maternal smoking on the foetal liver has been studied in vitro using cell lines, primary tissue and animal models. While these models have proven to be useful, poor cell phenotype, tissue scarcity, batch-to-batch variation and species differences have led to difficulties in data extrapolation toward human development. Therefore, in this study we have employed hepatoblasts, derived from pluripotent stem cells, to model the effects of xenobiotics from cigarette smoke on human hepatocyte development. Highly pure hepatocyte populations (>90%) were produced in vitro and exposed to factors present in cigarette smoke. Analysis of ATP levels revealed that, independent of the sex, the majority of smoking derivatives tested individually did not deplete ATP levels below 50%. However, following exposure to a cocktail of smoking derivatives, ATP production fell below 50% in a sex-dependent manner. This was paralleled by a loss metabolic activity and secretory ability in both female and male hepatocytes. Interestingly, cell depletion was less pronounced in female hepatocytes, whereas caspase activation was ~twofold greater, indicating sex differences in cell death upon exposure to the smoking derivatives tested.


Asunto(s)
Hepatocitos/citología , Hepatocitos/efectos de los fármacos , Células Madre Pluripotentes/efectos de los fármacos , Fumar/efectos adversos , Adenosina Trifosfato/metabolismo , Diferenciación Celular , Células Cultivadas , Cotinina/toxicidad , Células Madre Embrionarias/citología , Células Madre Embrionarias/efectos de los fármacos , Femenino , Humanos , Masculino , Células Madre Pluripotentes/citología , Hidrocarburos Policíclicos Aromáticos/toxicidad , Factores Sexuales , alfa-Fetoproteínas/metabolismo
15.
Anal Chem ; 88(24): 12419-12426, 2016 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-28193074

RESUMEN

Maternal diet and lifestyle choices may affect placental transfer of cobalamin (Cbl) to the fetus. Fetal liver concentration of Cbl reflects nutritional status with regards to vitamin B12, but at these low concentration current Cbl measurement methods lack robustness. An analytical method based on enzymatic extraction with subsequent reversed-phase-high-pressure liquid chromatography (RP-HPLC) separation and parallel ICPMS and electrospray ionization (ESI)-Orbitrap-MS to determine specifically Cbl species in liver samples of only 10-50 mg was developed using 14 pig livers. Subsequently 55 human fetal livers were analyzed. HPLC-ICPMS analysis for cobalt (Co) and Cbl gave detection limits of 0.18 ng/g and 0.88 ng/g d.m. in liver samples, respectively, with a recovery of >95%. Total Co (Cot) concentration did not reflect the amount of Cbl or vitamin B12 in the liver. Cbl bound Co contributes only 45 ± 15% to Cot. XRF mapping and µXANES analysis confirmed the occurrence of non-Cbl cobalt in pig liver hot spots indicating particular Co. No correlations of total cobalt nor Cbl with fetal weight or weeks of gestation were found for the human fetal livers. Although no gender difference could be identified for total Co concentration, female livers were significantly higher in Cbl concentration (24.1 ± 7.8 ng/g) than those from male fetuses (19.8 ± 7.1 ng/g) (p = 0.04). This HPLC-ICPMS method was able to quantify total Cot and Cbl in fetus liver, and it was sensitive and precise enough to identify this gender difference.


Asunto(s)
Cobalto/análisis , Hígado/química , Hígado/embriología , Vitamina B 12/análisis , Animales , Cromatografía Líquida de Alta Presión/métodos , Femenino , Humanos , Masculino , Espectrometría de Masa por Ionización de Electrospray/métodos , Porcinos
16.
Hum Reprod ; 31(2): 463-72, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26732622

RESUMEN

STUDY QUESTION: Do sex and maternal smoking effects on human fetal anogenital distance (AGD) persist in a larger study and how do these data integrate with the wider literature on perinatal human AGD, especially with respect to sex differences? SUMMARY ANSWER: Second trimester sex differences in AGD are broadly consistent with neonatal and infant measures of AGD and maternal cigarette smoking is associated with a temporary increase in male AGD in the absence of changes in circulating testosterone. WHAT IS KNOWN ALREADY: AGD is a biomarker of fetal androgen exposure, a reduced AGD in males being associated with cryptorchidism, hypospadias and reduced penile length. Normative fetal AGD data remain partial and windows of sensitivity of human fetal AGD to disruption are not known. STUDY DESIGN, SIZE, DURATION: The effects of fetal sex and maternal cigarette smoking on the second trimester (11-21 weeks of gestation) human fetal AGD were studied, along with measurement of testosterone and testicular transcripts associated with apoptosis and proliferation. PARTICIPANTS/MATERIALS, SETTING METHODS: AGD, measured from the centre of the anus to the posterior/caudal root of penis/clitoris (AGD(app)) was determined in 56 female and 70 male morphologically normal fetuses. These data were integrated with current literature on perinatal AGD in humans. MAIN RESULTS AND THE ROLE OF CHANCE: At 11-13 weeks of gestation male fetal AGD(app) was 61% (P< 0.001) longer than in females, increasing to 70% at 17-21 weeks. This sexual dimorphism was independent of growth characteristics (fetal weight, length, gonad weight). We confirmed that at 14-16 weeks of gestation male fetal AGD(app) was increased 28% (P < 0.05) by in utero cigarette smoke exposure. Testosterone levels were not affected by smoking. To develop normative data, our findings have been integrated with available data from in vivo ultrasound scans and neonatal studies. Inter-study variations in male/female AGD differences lead to the conclusion that normalization and standardization approaches should be developed to enable confidence in comparing data from different perinatal AGD studies. LIMITATIONS, REASONS FOR CAUTION: Sex differences, and a smoking-dependent increase in male fetal AGD at 14-16 weeks, identified in a preliminary study, were confirmed with a larger number of fetuses. However, human fetal AGD should, be re-assessed once much larger numbers of fetuses have been studied and this should be integrated with more detailed analysis of maternal lifestyle. Direct study of human fetal genital tissues is required for further mechanistic insights. WIDER IMPLICATIONS OF THE FINDINGS: Fetal exposure to cigarette smoke chemicals is known to lead to reduced fertility in men and women. Integration of our data into the perinatal human AGD literature shows that more work needs to be done to enable reliable inter-study comparisons. STUDY FUNDING/COMPETING INTERESTS: The study was supported by grants from the Chief Scientist Office (Scottish Executive, CZG/1/109 & CZG/4/742), NHS Grampian Endowments (08/02), the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement no 212885 and the Medical Research Council, UK (MR/L010011/1). The authors declare they have no competing interests, be it financial, personal or professional.


Asunto(s)
Desarrollo Fetal/efectos de los fármacos , Efectos Tardíos de la Exposición Prenatal , Caracteres Sexuales , Humo/efectos adversos , Fumar/efectos adversos , Adulto , Canal Anal/anatomía & histología , Pesos y Medidas Corporales , Clítoris/anatomía & histología , Cotinina/sangre , Femenino , Humanos , Lactante , Masculino , Edad Materna , Pene/anatomía & histología , Embarazo , Segundo Trimestre del Embarazo , Testosterona
17.
BMC Med ; 13: 18, 2015 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-25630355

RESUMEN

BACKGROUND: Maternal smoking is one of the most important modifiable risk factors for low birthweight, which is strongly associated with increased cardiometabolic disease risk in adulthood. Maternal smoking reduces the levels of the methyl donor vitamin B12 and is associated with altered DNA methylation at birth. Altered DNA methylation may be an important mechanism underlying increased disease susceptibility; however, the extent to which this can be induced in the developing fetus is unknown. METHODS: In this retrospective study, we measured concentrations of cobalt, vitamin B12, and mRNA transcripts encoding key enzymes in the 1-carbon cycle in 55 fetal human livers obtained from 11 to 21 weeks of gestation elective terminations and matched for gestation and maternal smoking. DNA methylation was measured at critical regions known to be susceptible to the in utero environment. Homocysteine concentrations were analyzed in plasma from 60 fetuses. RESULTS: In addition to identifying baseline sex differences, we found that maternal smoking was associated with sex-specific alterations of fetal liver vitamin B12, plasma homocysteine and expression of enzymes in the 1-carbon cycle in fetal liver. In the majority of the measured parameters which showed a sex difference, maternal smoking reduced the magnitude of that difference. Maternal smoking also altered DNA methylation at the imprinted gene IGF2 and the glucocorticoid receptor (GR/NR3C1). CONCLUSIONS: Our unique data strengthen studies linking in utero exposures to altered DNA methylation by showing, for the first time, that such changes are present in fetal life and in a key metabolic target tissue, human fetal liver. Furthermore, these data propose a novel mechanism by which such changes are induced, namely through alterations in methyl donor availability and changes in 1-carbon metabolism.


Asunto(s)
Carbono/metabolismo , Metilación de ADN/efectos de los fármacos , Feto/metabolismo , Hígado/metabolismo , Transferasas del Grupo 1-Carbono/metabolismo , Fumar/efectos adversos , Adulto , Peso Corporal , Cobalto/análisis , Femenino , Humanos , Factor II del Crecimiento Similar a la Insulina/genética , Factor II del Crecimiento Similar a la Insulina/metabolismo , Hígado/química , Masculino , Transferasas del Grupo 1-Carbono/genética , Embarazo , ARN Mensajero/análisis , Receptores de Glucocorticoides/metabolismo , Estudios Retrospectivos , Factores Sexuales , Vitamina B 12/análisis
19.
Mol Hum Reprod ; 20(1): 42-8, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23979962

RESUMEN

Fetal life is a critical time for female fertility, when germ cells complete proliferation, initiate meiosis and ultimately form the lifetime stock of primordial follicles. Female fertility may be reduced by in utero exposure to cigarette smoke, which contains ligands for the aryl hydrocarbon receptor (AhR). The AhR is a critical regulator of ovarian germ cell survival in mice; thus activation of this receptor in the ovaries of fetuses exposed to maternal cigarette smoke in utero may provide a mechanism by which female fertility is reduced in later life. We have therefore investigated AhR expression in the human fetal ovary, and examined the effects of an AhR ligand present in cigarette smoke, on germ cells in human fetal ovaries cultured in vitro. The results showed that AHR mRNA expression increased 2-fold between first and late second trimester (P = 0.008). AhR protein was confined to germ cells at all gestations, but varied from expression in most germ cells during the first trimester, to only patchy expression by clusters of germ cells at later gestations. Culture of human fetal ovaries with the AhR ligand 9,10-dimethyl-1,2-benzanthracene-3,4-dihydrodiol (DMBA-DHD; a component of cigarette smoke) did not affect germ cell number in vitro, but significantly reduced the proportion of proliferating germ cells by 29% (as assessed by phospho-histone H3 staining (P = 0.04)). Germ cell apoptosis was not significantly affected. These results reveal that germ cells in the human fetal ovary express AhR from the proliferative stage of development through entry into meiosis and beyond, and demonstrate that AhR ligands found in cigarette smoke have the capacity to impair human fetal ovarian germ cell proliferation.


Asunto(s)
9,10-Dimetil-1,2-benzantraceno/análogos & derivados , Células Germinativas/efectos de los fármacos , Ovario/embriología , Receptores de Hidrocarburo de Aril/metabolismo , Humo/efectos adversos , 9,10-Dimetil-1,2-benzantraceno/farmacología , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Femenino , Fármacos para la Fertilidad Femenina , Feto/efectos de los fármacos , Células Germinativas/metabolismo , Humanos , Oogénesis/efectos de los fármacos , Ovario/metabolismo , Embarazo , ARN Mensajero/biosíntesis , Receptores de Hidrocarburo de Aril/biosíntesis , Receptores de Hidrocarburo de Aril/genética
20.
Hum Reprod ; 29(7): 1471-89, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24847019

RESUMEN

STUDY QUESTION: How does maternal cigarette smoking disturb development of the human fetal ovary? SUMMARY ANSWER: Maternal smoking increases fetal estrogen titres and dysregulates several developmental processes in the fetal ovary. WHAT IS KNOWN ALREADY: Exposure to maternal cigarette smoking during gestation reduces human fetal ovarian cell numbers, germ cell proliferation and subsequent adult fecundity. STUDY DESIGN, SIZE, DURATION: The effects of maternal cigarette smoking on the second trimester human fetal ovary, fetal endocrine signalling and fetal chemical burden were studied. A total of 105 fetuses were studied, 56 from mothers who smoked during pregnancy and 49 from those who did not. PARTICIPANTS/MATERIALS, SETTING METHODS: Ovary, liver and plasma samples were collected from electively terminated, normally progressing, second trimester human fetuses. Circulating fetal hormones, levels of 73 fetal ovarian transcripts, protein localization, density of oocytes/primordial follicles and levels of 16 polycyclic aromatic hydrocarbons (PAHs) in the fetal liver were determined. MAIN RESULTS AND THE ROLE OF CHANCE: Circulating fetal estrogen levels were very high and were increased by maternal smoking (ANOVA, P = 0.055-0.004 versus control). Smoke exposure also dysregulated (two-way ANOVA, smoking versus gestation weeks interaction, P = 0.046-0.023) four fetal ovarian genes (cytochrome P450 scc [CYP11A1], NOBOX oogenesis homeobox [NOBOX], activator of apoptosis harakiri [HRK], nuclear receptor subfamily 2, group E, member 1 [NR2E1]), shifted the ovarian Inhibin ßA/inhibin α ratio (NHBA/INHA) transcript ratio in favour of activin (ANOVA, P = 0.049 versus control) and reduced the proportion of dominant-negative estrogen receptor 2 (ERß: ESR2) isoforms in half the exposed fetuses. PAHs, ligands for the aryl hydrocarbon receptor (AHR), were increased nearly 6-fold by maternal smoking (ANOVA, P = 0.011 versus control). A fifth transcript, COUP transcription factor 1 (nuclear receptor subfamily 2, group F, member 1: NR2F1, which contains multiple AHR-binding sites), was both significantly increased (ANOVA, P = 0.026 versus control) and dysregulated by (two-way ANOVA, smoking versus gestation weeks interaction, P = 0.021) maternal smoking. NR2F1 is associated with repression of FSHR expression and smoke-exposed ovaries failed to show the normal increase in FSHR expression during the second trimester. There was a significantly higher number of DEAD (Asp-Glu-Ala-Asp) box polypeptide 4 (DDX4) VASA-positive (ANOVA, P = 0.016 versus control), but not POU domain, class 1, transcription factor 1 (POU5F1) OCT3/4-positive, oocytes in smoke-exposed fetuses and this matched with a significantly higher number of primordial follicles (ANOVA, P = 0.024 versus control). LIMITATIONS, REASONS FOR CAUTION: The effects of maternal smoking on establishment of the maximum fetal primordial follicle pool cannot be reliably studied in our population since the process is not completed until 28 weeks of gestation and normal fetuses older than 21 weeks of gestation are not available for study. Our data suggest that some fetal ovaries are affected by smoke exposure while others are not, indicating that additional studies, with larger numbers, may show more significant effects. WIDER IMPLICATIONS OF THE FINDINGS: Fetal exposure to chemicals in cigarette smoke is known to lead to reduced fecundity in women. Our study suggests, for the first time, that this occurs via mechanisms involving activation of AHR, disruption of inhibin/activin and estrogen signalling, increased exposure to estrogen and dysregulation of multiple molecular pathways in the exposed human fetal ovary. Our data also suggest that alterations in the ESR2 positive and dominant negative isoforms may be associated with reduced sensitivity of some fetuses to increased estrogens and maternal smoking. STUDY FUNDING/COMPETING INTEREST(S): The study was supported by grants from the Chief Scientist Office (Scottish Executive, CZG/1/109, and CZG/4/742), NHS Grampian Endowments (08/02), the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 212885, a Society for Reproduction & Fertility summer studentship, Medical Research Scotland (research grant 354 FRG) and the Medical Research Council (WBS: U.1276.00.002.00001 and G1100357). The authors declare they have no competing interests, be it financial, personal or professional.


Asunto(s)
Exposición Materna/efectos adversos , Ovario/efectos de los fármacos , Fumar/efectos adversos , Adulto , Índice de Masa Corporal , Proliferación Celular , Cotinina/metabolismo , Estrógenos/metabolismo , Femenino , Desarrollo Fetal/efectos de los fármacos , Células Germinativas/citología , Humanos , Inmunohistoquímica , Recién Nacido , Ligandos , Hígado/metabolismo , Oocitos/citología , Folículo Ovárico/embriología , Ovario/embriología , Ovario/patología , Fenotipo , Hidrocarburos Policíclicos Aromáticos , Embarazo , Segundo Trimestre del Embarazo , Transducción de Señal , Productos de Tabaco
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA