Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 184(9): 2454-2470.e26, 2021 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-33857425

RESUMEN

Glioblastoma multiforme (GBM) is an aggressive brain tumor for which current immunotherapy approaches have been unsuccessful. Here, we explore the mechanisms underlying immune evasion in GBM. By serially transplanting GBM stem cells (GSCs) into immunocompetent hosts, we uncover an acquired capability of GSCs to escape immune clearance by establishing an enhanced immunosuppressive tumor microenvironment. Mechanistically, this is not elicited via genetic selection of tumor subclones, but through an epigenetic immunoediting process wherein stable transcriptional and epigenetic changes in GSCs are enforced following immune attack. These changes launch a myeloid-affiliated transcriptional program, which leads to increased recruitment of tumor-associated macrophages. Furthermore, we identify similar epigenetic and transcriptional signatures in human mesenchymal subtype GSCs. We conclude that epigenetic immunoediting may drive an acquired immune evasion program in the most aggressive mesenchymal GBM subtype by reshaping the tumor immune microenvironment.


Asunto(s)
Neoplasias Encefálicas/inmunología , Epigénesis Genética , Glioblastoma/inmunología , Evasión Inmune/inmunología , Células Mieloides/inmunología , Células Madre Neoplásicas/inmunología , Microambiente Tumoral/inmunología , Animales , Apoptosis , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Proliferación Celular , Metilación de ADN , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patología , Humanos , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID , Células Mieloides/metabolismo , Células Mieloides/patología , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Annu Rev Cell Dev Biol ; 34: 29-58, 2018 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-30110558

RESUMEN

Cell adhesion to macromolecules in the microenvironment is essential for the development and maintenance of tissues, and its dysregulation can lead to a range of disease states, including inflammation, fibrosis, and cancer. The biomechanical and biochemical mechanisms that mediate cell adhesion rely on signaling by a range of effector proteins, including kinases and associated scaffolding proteins. The intracellular trafficking of these must be tightly controlled in space and time to enable effective cell adhesion and microenvironmental sensing and to integrate cell adhesion with, and compartmentalize it from, other cellular processes, such as gene transcription, protein degradation, and cell division. Delivery of adhesion receptors and signaling proteins from the plasma membrane to unanticipated subcellular locales is revealing novel biological functions. Here, we review the expected and unexpected trafficking, and sites of activity, of adhesion and growth factor receptors and intracellular kinase partners as we begin to appreciate the complexity and diversity of their spatial regulation.


Asunto(s)
Adhesión Celular/genética , Complejo GPIb-IX de Glicoproteína Plaquetaria/genética , Transporte de Proteínas/genética , Receptores de Factores de Crecimiento/genética , Membrana Celular/genética , Núcleo Celular/genética , Endosomas/genética , Humanos , Fosfotransferasas/genética
3.
Cell ; 163(1): 160-73, 2015 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-26406376

RESUMEN

Focal adhesion kinase (FAK) promotes anti-tumor immune evasion. Specifically, the kinase activity of nuclear-targeted FAK in squamous cell carcinoma (SCC) cells drives exhaustion of CD8(+) T cells and recruitment of regulatory T cells (Tregs) in the tumor microenvironment by regulating chemokine/cytokine and ligand-receptor networks, including via transcription of Ccl5, which is crucial. These changes inhibit antigen-primed cytotoxic CD8(+) T cell activity, permitting growth of FAK-expressing tumors. Mechanistically, nuclear FAK is associated with chromatin and exists in complex with transcription factors and their upstream regulators that control Ccl5 expression. Furthermore, FAK's immuno-modulatory nuclear activities may be specific to cancerous squamous epithelial cells, as normal keratinocytes do not have nuclear FAK. Finally, we show that a small-molecule FAK kinase inhibitor, VS-4718, which is currently in clinical development, also drives depletion of Tregs and promotes a CD8(+) T cell-mediated anti-tumor response. Therefore, FAK inhibitors may trigger immune-mediated tumor regression, providing previously unrecognized therapeutic opportunities.


Asunto(s)
Carcinoma de Células Escamosas/inmunología , Quimiocina CCL5/genética , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Neoplasias Cutáneas/inmunología , Linfocitos T Reguladores/inmunología , Escape del Tumor , Aminopiridinas/administración & dosificación , Animales , Carcinoma de Células Escamosas/metabolismo , Quimiocina CCL5/inmunología , Modelos Animales de Enfermedad , Proteína-Tirosina Quinasas de Adhesión Focal/antagonistas & inhibidores , Proteína-Tirosina Quinasas de Adhesión Focal/genética , Humanos , Queratinocitos/metabolismo , Ratones , Ratones Desnudos , Neoplasias Cutáneas/metabolismo , Transcripción Genética
4.
Nature ; 629(8014): 1174-1181, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38720073

RESUMEN

Phosphorylation of proteins on tyrosine (Tyr) residues evolved in metazoan organisms as a mechanism of coordinating tissue growth1. Multicellular eukaryotes typically have more than 50 distinct protein Tyr kinases that catalyse the phosphorylation of thousands of Tyr residues throughout the proteome1-3. How a given Tyr kinase can phosphorylate a specific subset of proteins at unique Tyr sites is only partially understood4-7. Here we used combinatorial peptide arrays to profile the substrate sequence specificity of all human Tyr kinases. Globally, the Tyr kinases demonstrate considerable diversity in optimal patterns of residues surrounding the site of phosphorylation, revealing the functional organization of the human Tyr kinome by substrate motif preference. Using this information, Tyr kinases that are most compatible with phosphorylating any Tyr site can be identified. Analysis of mass spectrometry phosphoproteomic datasets using this compendium of kinase specificities accurately identifies specific Tyr kinases that are dysregulated in cells after stimulation with growth factors, treatment with anti-cancer drugs or expression of oncogenic variants. Furthermore, the topology of known Tyr signalling networks naturally emerged from a comparison of the sequence specificities of the Tyr kinases and the SH2 phosphotyrosine (pTyr)-binding domains. Finally we show that the intrinsic substrate specificity of Tyr kinases has remained fundamentally unchanged from worms to humans, suggesting that the fidelity between Tyr kinases and their protein substrate sequences has been maintained across hundreds of millions of years of evolution.


Asunto(s)
Fosfotirosina , Proteínas Tirosina Quinasas , Especificidad por Sustrato , Tirosina , Animales , Humanos , Secuencias de Aminoácidos , Evolución Molecular , Espectrometría de Masas , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Fosforilación , Fosfotirosina/metabolismo , Proteínas Tirosina Quinasas/efectos de los fármacos , Proteínas Tirosina Quinasas/metabolismo , Proteoma/química , Proteoma/metabolismo , Proteómica , Transducción de Señal , Dominios Homologos src , Tirosina/metabolismo , Tirosina/química
5.
EMBO J ; 39(19): e104743, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32779739

RESUMEN

Focal adhesion kinase (FAK) is a key component of the membrane proximal signaling layer in focal adhesion complexes, regulating important cellular processes, including cell migration, proliferation, and survival. In the cytosol, FAK adopts an autoinhibited state but is activated upon recruitment into focal adhesions, yet how this occurs or what induces structural changes is unknown. Here, we employ cryo-electron microscopy to reveal how FAK associates with lipid membranes and how membrane interactions unlock FAK autoinhibition to promote activation. Intriguingly, initial binding of FAK to the membrane causes steric clashes that release the kinase domain from autoinhibition, allowing it to undergo a large conformational change and interact itself with the membrane in an orientation that places the active site toward the membrane. In this conformation, the autophosphorylation site is exposed and multiple interfaces align to promote FAK oligomerization on the membrane. We show that interfaces responsible for initial dimerization and membrane attachment are essential for FAK autophosphorylation and resulting cellular activity including cancer cell invasion, while stable FAK oligomerization appears to be needed for optimal cancer cell proliferation in an anchorage-independent manner. Together, our data provide structural details of a key membrane bound state of FAK that is primed for efficient autophosphorylation and activation, hence revealing the critical event in integrin mediated FAK activation and signaling at focal adhesions.


Asunto(s)
Proteínas Aviares/química , Proteína-Tirosina Quinasas de Adhesión Focal/química , Membranas/química , Multimerización de Proteína , Animales , Proteínas Aviares/metabolismo , Pollos , Activación Enzimática , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Células HEK293 , Humanos , Membranas/enzimología , Relación Estructura-Actividad
6.
Gastroenterology ; 160(1): 362-377.e13, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33039466

RESUMEN

BACKGROUND & AIMS: Continuing recalcitrance to therapy cements pancreatic cancer (PC) as the most lethal malignancy, which is set to become the second leading cause of cancer death in our society. The study aim was to investigate the association between DNA damage response (DDR), replication stress, and novel therapeutic response in PC to develop a biomarker-driven therapeutic strategy targeting DDR and replication stress in PC. METHODS: We interrogated the transcriptome, genome, proteome, and functional characteristics of 61 novel PC patient-derived cell lines to define novel therapeutic strategies targeting DDR and replication stress. Validation was done in patient-derived xenografts and human PC organoids. RESULTS: Patient-derived cell lines faithfully recapitulate the epithelial component of pancreatic tumors, including previously described molecular subtypes. Biomarkers of DDR deficiency, including a novel signature of homologous recombination deficiency, cosegregates with response to platinum (P < .001) and PARP inhibitor therapy (P < .001) in vitro and in vivo. We generated a novel signature of replication stress that predicts response to ATR (P < .018) and WEE1 inhibitor (P < .029) treatment in both cell lines and human PC organoids. Replication stress was enriched in the squamous subtype of PC (P < .001) but was not associated with DDR deficiency. CONCLUSIONS: Replication stress and DDR deficiency are independent of each other, creating opportunities for therapy in DDR-proficient PC and after platinum therapy.


Asunto(s)
Adenocarcinoma/patología , Daño del ADN/genética , Reparación del ADN/genética , Replicación del ADN/genética , Neoplasias Pancreáticas/patología , Adenocarcinoma/genética , Adenocarcinoma/terapia , Biomarcadores , Técnicas de Cultivo de Célula , Línea Celular Tumoral , Humanos , Terapia Molecular Dirigida , Organoides , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/terapia , Ensayos Antitumor por Modelo de Xenoinjerto
7.
Nat Rev Mol Cell Biol ; 11(11): 802-14, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20966971

RESUMEN

Focal adhesion kinase (FAK) is a scaffold and tyrosine kinase protein that binds to itself and cellular partners through its four-point-one, ezrin, radixin, moesin (FERM) domain. Recent structural work reveals that regulatory protein partners convert auto-inhibited FAK into its active state by binding to its FERM domain. Further, the identity of FAK FERM domain-interacting proteins yields clues as to how FAK coordinates diverse cellular responses, including cell adhesion, polarization, migration, survival and death, and suggests that FERM domains might mediate information transfer between the cell cortex and nucleus. Importantly, the FAK FERM domain might act as a paradigm for the actions of other FERM domain-containing proteins.


Asunto(s)
Proteína-Tirosina Quinasas de Adhesión Focal/química , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Estructura Terciaria de Proteína , Transducción de Señal , Animales , Núcleo Celular/metabolismo , Fenómenos Fisiológicos Celulares , Citoplasma/metabolismo , Humanos , Modelos Moleculares , Unión Proteica
8.
J Biol Chem ; 295(34): 12045-12057, 2020 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-32616651

RESUMEN

Ambra1 is considered an autophagy and trafficking protein with roles in neurogenesis and cancer cell invasion. Here, we report that Ambra1 also localizes to the nucleus of cancer cells, where it has a novel nuclear scaffolding function that controls gene expression. Using biochemical fractionation and proteomics, we found that Ambra1 binds to multiple classes of proteins in the nucleus, including nuclear pore proteins, adaptor proteins such as FAK and Akap8, chromatin-modifying proteins, and transcriptional regulators like Brg1 and Atf2. We identified biologically important genes, such as Angpt1, Tgfb2, Tgfb3, Itga8, and Itgb7, whose transcription is regulated by Ambra1-scaffolded complexes, likely by altering histone modifications and Atf2 activity. Therefore, in addition to its recognized roles in autophagy and trafficking, Ambra1 scaffolds protein complexes at chromatin, regulating transcriptional signaling in the nucleus. This novel function for Ambra1, and the specific genes impacted, may help to explain the wider role of Ambra1 in cancer cell biology.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Cromatina/metabolismo , Regulación de la Expresión Génica , Complejos Multiproteicos/metabolismo , Transducción de Señal , Proteínas de Anclaje a la Quinasa A/genética , Proteínas de Anclaje a la Quinasa A/metabolismo , Factor de Transcripción Activador 2/genética , Factor de Transcripción Activador 2/metabolismo , Transporte Activo de Núcleo Celular/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Angiopoyetina 1/biosíntesis , Angiopoyetina 1/genética , Línea Celular , Cromatina/genética , ADN Helicasas/genética , ADN Helicasas/metabolismo , Quinasa 1 de Adhesión Focal/genética , Quinasa 1 de Adhesión Focal/metabolismo , Humanos , Cadenas alfa de Integrinas/biosíntesis , Cadenas alfa de Integrinas/genética , Cadenas beta de Integrinas/biosíntesis , Cadenas beta de Integrinas/genética , Complejos Multiproteicos/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factor de Crecimiento Transformador beta2/biosíntesis , Factor de Crecimiento Transformador beta2/genética , Factor de Crecimiento Transformador beta3/biosíntesis , Factor de Crecimiento Transformador beta3/genética
9.
Nat Rev Mol Cell Biol ; 14(9): 548, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23942448
11.
EMBO J ; 33(13): 1474-91, 2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24788409

RESUMEN

The non-receptor tyrosine kinase c-Src, hereafter referred to as Src, is overexpressed or activated in multiple human malignancies. There has been much speculation about the functional role of Src in colorectal cancer (CRC), with Src amplification and potential activating mutations in up to 20% of the human tumours, although this has never been addressed due to multiple redundant family members. Here, we have used the adult Drosophila and mouse intestinal epithelium as paradigms to define a role for Src during tissue homeostasis, damage-induced regeneration and hyperplasia. Through genetic gain and loss of function experiments, we demonstrate that Src is necessary and sufficient to drive intestinal stem cell (ISC) proliferation during tissue self-renewal, regeneration and tumourigenesis. Surprisingly, Src plays a non-redundant role in the mouse intestine, which cannot be substituted by the other family kinases Fyn and Yes. Mechanistically, we show that Src drives ISC proliferation through upregulation of EGFR and activation of Ras/MAPK and Stat3 signalling. Therefore, we demonstrate a novel essential role for Src in intestinal stem/progenitor cell proliferation and tumourigenesis initiation in vivo.


Asunto(s)
Transformación Celular Neoplásica/metabolismo , Neoplasias Colorrectales/enzimología , Proteínas de Drosophila/metabolismo , Mucosa Intestinal/enzimología , Proteínas Tirosina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Regeneración , Células Madre/enzimología , Familia-src Quinasas/metabolismo , Animales , Proteína Tirosina Quinasa CSK , Proliferación Celular , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Proteínas de Drosophila/genética , Drosophila melanogaster , Receptores ErbB/genética , Receptores ErbB/metabolismo , Amplificación de Genes , Humanos , Mucosa Intestinal/patología , Sistema de Señalización de MAP Quinasas/genética , Ratones , Ratones Transgénicos , Proteínas Tirosina Quinasas/genética , Proteínas Proto-Oncogénicas/genética , Receptores de Péptidos de Invertebrados/genética , Receptores de Péptidos de Invertebrados/metabolismo , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Células Madre/patología , Familia-src Quinasas/genética
12.
J Cell Sci ; 129(17): 3211-8, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27505888

RESUMEN

The actin depolymerizing factor (ADF)/cofilin family comprises small actin-binding proteins with crucial roles in development, tissue homeostasis and disease. They are best known for their roles in regulating actin dynamics by promoting actin treadmilling and thereby driving membrane protrusion and cell motility. However, recent discoveries have increased our understanding of the functions of these proteins beyond their well-characterized roles. This Cell Science at a Glance article and the accompanying poster serve as an introduction to the diverse roles of the ADF/cofilin family in cells. The first part of the article summarizes their actions in actin treadmilling and the main mechanisms for their intracellular regulation; the second part aims to provide an outline of the emerging cellular roles attributed to the ADF/cofilin family, besides their actions in actin turnover. The latter part discusses an array of diverse processes, which include regulation of intracellular contractility, maintenance of nuclear integrity, transcriptional regulation, nuclear actin monomer transfer, apoptosis and lipid metabolism. Some of these could, of course, be indirect consequences of actin treadmilling functions, and this is discussed.


Asunto(s)
Factores Despolimerizantes de la Actina/metabolismo , Destrina/metabolismo , Animales , Apoptosis , Núcleo Celular/metabolismo , Humanos , Metabolismo de los Lípidos , Estrés Fisiológico
13.
Biomacromolecules ; 19(7): 2721-2730, 2018 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-29689166

RESUMEN

The combination of controlled living polymerization in association with rapid and highly efficient macromolecule conjugation strategies provides a powerful tool for the synthesis of novel polymeric materials. Here functional block copolymers were rapidly and quantitatively conjugated using an efficient reaction between polymers containing a phenolic group and the 4-phenyl-3 H-1,2,4-triazole-3,5(4 H)-dione (PTAD) moiety and used to generate nanoparticles that encapsulated drugs. pH responsive amphiphilic block copolymers, which self-assemble into nanoparticles, were fabricated using our novel polymer conjugation strategy with the resulting system designed to promote drug release within the acidic milieu of the cancer microenvironment. The conjugation strategy also enabled the direct tagging of the nanoparticles with a range of fluorophores, targeting assets, or both with cargo release demonstrated in cancer cells.


Asunto(s)
Antineoplásicos/administración & dosificación , Nanoconjugados/química , Técnicas de Química Sintética/métodos , Células HeLa , Humanos , Polimerizacion , Tensoactivos/química , Triazoles/química
14.
J Cell Sci ; 128(24): 4601-14, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26542021

RESUMEN

Fascin is an actin-binding and bundling protein that is highly upregulated in most epithelial cancers. Fascin promotes cell migration and adhesion dynamics in vitro and tumour cell metastasis in vivo. However, potential non-actin bundling roles for fascin remain unknown. Here, we show for the first time that fascin can directly interact with the microtubule cytoskeleton and that this does not depend upon fascin-actin bundling. Microtubule binding contributes to fascin-dependent control of focal adhesion dynamics and cell migration speed. We also show that fascin forms a complex with focal adhesion kinase (FAK, also known as PTK2) and Src, and that this signalling pathway lies downstream of fascin-microtubule association in the control of adhesion stability. These findings shed light on new non actin-dependent roles for fascin and might have implications for the design of therapies to target fascin in metastatic disease.


Asunto(s)
Proteínas Portadoras/metabolismo , Movimiento Celular/fisiología , Proteínas de Microfilamentos/metabolismo , Microtúbulos/metabolismo , Proteínas Portadoras/genética , Adhesión Celular/fisiología , Quinasa 1 de Adhesión Focal/genética , Quinasa 1 de Adhesión Focal/metabolismo , Células HeLa , Humanos , Proteínas de Microfilamentos/genética , Microtúbulos/genética
15.
PLoS Genet ; 10(3): e1004262, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24676055

RESUMEN

Receptor Tyrosine Kinases (RTKs) and Focal Adhesion Kinase (FAK) regulate multiple signalling pathways, including mitogen-activated protein (MAP) kinase pathway. FAK interacts with several RTKs but little is known about how FAK regulates their downstream signalling. Here we investigated how FAK regulates signalling resulting from the overexpression of the RTKs RET and EGFR. FAK suppressed RTKs signalling in Drosophila melanogaster epithelia by impairing MAPK pathway. This regulation was also observed in MDA-MB-231 human breast cancer cells, suggesting it is a conserved phenomenon in humans. Mechanistically, FAK reduced receptor recycling into the plasma membrane, which resulted in lower MAPK activation. Conversely, increasing the membrane pool of the receptor increased MAPK pathway signalling. FAK is widely considered as a therapeutic target in cancer biology; however, it also has tumour suppressor properties in some contexts. Therefore, the FAK-mediated negative regulation of RTK/MAPK signalling described here may have potential implications in the designing of therapy strategies for RTK-driven tumours.


Asunto(s)
Neoplasias de la Mama/genética , Quinasa 1 de Adhesión Focal/genética , Sistema de Señalización de MAP Quinasas/genética , Proteínas Tirosina Quinasas Receptoras/genética , Animales , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proliferación Celular , Drosophila melanogaster/genética , Células Epiteliales/metabolismo , Femenino , Quinasa 1 de Adhesión Focal/metabolismo , Humanos , Fosforilación , Proteínas Tirosina Quinasas Receptoras/metabolismo
16.
J Cell Sci ; 127(Pt 24): 5303-16, 2014 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-25359883

RESUMEN

Eps8 is an actin regulatory scaffold protein whose expression is increased in squamous cell carcinoma (SCC) cells. It forms a complex with both focal adhesion kinase (FAK, also known as PTK2) and Src in SCC cells derived from skin carcinomas induced by administration of the chemical DMBA followed by TPA (the DMBA/TPA model). Here, we describe two new roles for Eps8. Firstly, it controls the spatial distribution of active Src in a FAK-dependent manner. Specifically, Eps8 participates in, and regulates, a biochemical complex with Src and drives trafficking of Src to autophagic structures that SCC cells use to cope with high levels of active Src when FAK is absent. Secondly, when FAK is expressed in SCC cells, thereby meaning active Src becomes tethered at focal adhesion complexes, Eps8 is also recruited to focal adhesions and is required for FAK-dependent polarization and invasion. Therefore, Eps8 is a crucial mediator of Src- and FAK-regulated processes; it participates in specific biochemical complexes and promotes actin re-arrangements that determine the spatial localization of Src, and modulates the functions of Src and FAK during invasive migration.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Familia-src Quinasas/metabolismo , Células 3T3 , Actinas/metabolismo , Secuencia de Aminoácidos , Animales , Autofagia , Línea Celular Tumoral , Movimiento Celular , Polaridad Celular , Proteína-Tirosina Quinasas de Adhesión Focal/química , Adhesiones Focales/metabolismo , Técnicas de Silenciamiento del Gen , Humanos , Ratones , Datos de Secuencia Molecular , Invasividad Neoplásica , Péptidos/química , Péptidos/metabolismo , Fagosomas/metabolismo , Fenotipo , Unión Proteica , Transporte de Proteínas , Regulación hacia Arriba
17.
J Cell Sci ; 126(Pt 2): 393-401, 2013 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-23525005

RESUMEN

E-cadherin is a single-pass transmembrane protein that mediates homophilic cell-cell interactions. Tumour progression is often associated with the loss of E-cadherin function and the transition to a more motile and invasive phenotype. This requires the coordinated regulation of both E-cadherin-mediated cell-cell adhesions and integrin-mediated adhesions that contact the surrounding extracellular matrix (ECM). Regulation of both types of adhesion is dynamic as cells respond to external cues from the tumour microenvironment that regulate polarity, directional migration and invasion. Here, we review the mechanisms by which tumour cells control the cross-regulation between dynamic E-cadherin-mediated cell-cell adhesions and integrin-mediated cell-matrix contacts, which govern the invasive and metastatic potential of tumours. In particular, we will discuss the role of the adhesion-linked kinases Src, focal adhesion kinase (FAK) and integrin-linked kinase (ILK), and the Rho family of GTPases.


Asunto(s)
Cadherinas/metabolismo , Integrinas/metabolismo , Neoplasias/metabolismo , Neoplasias/patología , Animales , Adhesión Celular/fisiología , Comunicación Celular/fisiología , Línea Celular Tumoral , Humanos , Invasividad Neoplásica , Metástasis de la Neoplasia , Transducción de Señal , Microambiente Tumoral
18.
Nat Cell Biol ; 10(9): 1017-9, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18758489

RESUMEN

Talin can activate integrins to bind the extracellular matrix and also connect matrix-engaged integrins to the actin cytoskeleton. New work shows that cell spreading can be dissected into three distinct phases according to their differential requirements for talin function.


Asunto(s)
Movimiento Celular , Tamaño de la Célula , Talina/deficiencia , Animales , Movimiento Celular/efectos de los fármacos , Forma de la Célula/efectos de los fármacos , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/enzimología , Fibronectinas/farmacología , Quinasa 1 de Adhesión Focal/metabolismo , Adhesiones Focales/efectos de los fármacos , Adhesiones Focales/enzimología , Humanos , Integrina beta1/metabolismo , Ratones
19.
Nat Cell Biol ; 9(9): 1046-56, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17721515

RESUMEN

Networks of actin filaments, controlled by the Arp2/3 complex, drive membrane protrusion during cell migration. How integrins signal to the Arp2/3 complex is not well understood. Here, we show that focal adhesion kinase (FAK) and the Arp2/3 complex associate and colocalize at transient structures formed early after adhesion. Nascent lamellipodia, which originate at these structures, do not form in FAK-deficient cells, or in cells in which FAK mutants cannot be autophosphorylated after integrin engagement. The FERM domain of FAK binds directly to Arp3 and can enhance Arp2/3-dependent actin polymerization. Critically, Arp2/3 is not bound when FAK is phosphorylated on Tyr 397. Interfering peptides and FERM-domain point mutants show that FAK binding to Arp2/3 controls protrusive lamellipodia formation and cell spreading. This establishes a new function for the FAK FERM domain in forming a phosphorylation-regulated complex with Arp2/3, linking integrin signalling directly with the actin polymerization machinery.


Asunto(s)
Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Actinas/metabolismo , Adhesión Celular/fisiología , Proteína-Tirosina Quinasas de Adhesión Focal/química , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Estructura Terciaria de Proteína , Complejo 2-3 Proteico Relacionado con la Actina/genética , Secuencia de Aminoácidos , Animales , Células Cultivadas , Proteína-Tirosina Quinasas de Adhesión Focal/genética , Integrinas/metabolismo , Ratones , Ratones Noqueados , Datos de Secuencia Molecular , Fosforilación , Unión Proteica , Seudópodos/metabolismo , Fibras de Estrés/metabolismo , Tirosina/metabolismo , Proteína Neuronal del Síndrome de Wiskott-Aldrich/metabolismo
20.
EMBO Rep ; 13(8): 733-40, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22732841

RESUMEN

We have recently described that autophagic targeting of Src maintains cancer cell viability when FAK signalling is defective. Here, we show that the Ret tyrosine kinase is also degraded by autophagy in cancer cells with altered/reduced FAK signalling, preventing its binding to FAK at integrin adhesions. Inhibition of autophagy restores Ret localization to focal adhesions. Importantly, Src kinase activity is required to target Ret to autophagosomes and enhance Ret degradation. Src is thus a general mediator of selective autophagic targeting of adhesion-linked kinases, and Ret a second FAK-binding tyrosine kinase degraded through autophagy in cancer cells under adhesion stress. Src--by controlling not only its own degradation but also that of other FAK-binding partners--allows cancer cell survival, suggesting a new therapeutic strategy.


Asunto(s)
Autofagia , Carcinoma de Células Escamosas/enzimología , Quinasa 1 de Adhesión Focal/metabolismo , Proteolisis , Proteínas Proto-Oncogénicas c-ret/metabolismo , Transducción de Señal , Familia-src Quinasas/metabolismo , Animales , Carcinoma de Células Escamosas/patología , Adhesión Celular , Línea Celular Tumoral , Quinasa 1 de Adhesión Focal/deficiencia , Humanos , Espacio Intracelular/metabolismo , Ratones , Fagosomas/metabolismo , Fosforilación , Unión Proteica , Transporte de Proteínas , Proteínas Proto-Oncogénicas c-cbl/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA