Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(18)2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-36142542

RESUMEN

Despite decades of effort in understanding pancreatic ductal adenocarcinoma (PDAC), there is still a lack of innovative targeted therapies for this devastating disease. Herein, we report the expression of apelin and its receptor, APJ, in human pancreatic adenocarcinoma and its protumoral function. Apelin and APJ protein expression in tumor tissues from patients with PDAC and their spatiotemporal pattern of expression in engineered mouse models of PDAC were investigated by immunohistochemistry. Apelin signaling function in tumor cells was characterized in pancreatic tumor cell lines by Western blot as well as proliferation, migration assays and in murine orthotopic xenograft experiments. In premalignant lesions, apelin was expressed in epithelial lesions whereas APJ was found in isolated cells tightly attached to premalignant lesions. However, in the invasive stage, apelin and APJ were co-expressed by tumor cells. In human tumor cells, apelin induced a long-lasting activation of PI3K/Akt, upregulated ß-catenin and the oncogenes c-myc and cyclin D1 and promoted proliferation, migration and glucose uptake. Apelin receptor blockades reduced cancer cell proliferation along with a reduction in pancreatic tumor burden. These findings identify the apelin signaling pathway as a new actor for PDAC development and a novel therapeutic target for this incurable disease.


Asunto(s)
Adenocarcinoma , Receptores de Apelina/metabolismo , Apelina/metabolismo , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Adenocarcinoma/patología , Animales , Carcinoma Ductal Pancreático/genética , Ciclina D1/metabolismo , Glucosa , Humanos , Ratones , Oncogenes , Neoplasias Pancreáticas/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , beta Catenina/metabolismo , Neoplasias Pancreáticas
2.
Mol Ther ; 28(2): 357-366, 2020 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-31870623

RESUMEN

The recycling activity of cytidine deaminase (CDA) within the pyrimidine salvage pathway is essential to DNA and RNA synthesis. As such, CDA deficiency can lead to replicative stress, notably in Bloom syndrome. Alternatively, CDA also can deaminate cytidine and deoxycytidine analog-based therapies, such as gemcitabine. Thus, CDA overexpression is often associated with lower systemic, chemotherapy-related, adverse effects but also with resistance to treatment. Considering the increasing interest of CDA in cancer chemoresistance, the aims of this review are to describe CDA structure, regulation of expression, and activity, and to report the therapeutic strategies based on CDA expression that recently emerged for tumor treatment.


Asunto(s)
Citidina Desaminasa/genética , Citidina Desaminasa/metabolismo , Susceptibilidad a Enfermedades , Animales , Regulación de la Expresión Génica , Sitios Genéticos , Predisposición Genética a la Enfermedad , Estructuras Genéticas , Terapia Genética , Humanos , Relación Estructura-Actividad
3.
Commun Biol ; 7(1): 1065, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39215188

RESUMEN

Cytidine deaminase (CDA) converts cytidine and deoxycytidine into uridine and deoxyuridine as part of the pyrimidine salvage pathway. Elevated levels of CDA are found in pancreatic tumors and associated with chemoresistance. Recent evidence suggests that CDA has additional functions in cancer cell biology. In this work, we uncover a novel role of CDA in pancreatic cancer cell metabolism. CDA silencing impairs mitochondrial metabolite production, respiration, and ATP production in pancreatic cancer cells, leading to a so-called Pasteur effect metabolic shift towards glycolysis. Conversely, we find that CDA expression promotes mitochondrial biogenesis and oxidative phosphorylation, independently of CDA deaminase activity. Furthermore, we observe that patient primary cells overexpressing CDA are more sensitive to mitochondria-targeting drugs. Collectively, this work shows that CDA plays a non-canonical role in pancreatic cancer biology by promoting mitochondrial function, which could be translated into novel therapeutic vulnerabilities.


Asunto(s)
Citidina Desaminasa , Mitocondrias , Biogénesis de Organelos , Neoplasias Pancreáticas , Humanos , Citidina Desaminasa/metabolismo , Citidina Desaminasa/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Mitocondrias/metabolismo , Línea Celular Tumoral , Fosforilación Oxidativa , Glucólisis
4.
Cancer Res ; 84(7): 1013-1028, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38294491

RESUMEN

Cytidine deaminase (CDA) functions in the pyrimidine salvage pathway for DNA and RNA syntheses and has been shown to protect cancer cells from deoxycytidine-based chemotherapies. In this study, we observed that CDA was overexpressed in pancreatic adenocarcinoma from patients at baseline and was essential for experimental tumor growth. Mechanistic investigations revealed that CDA localized to replication forks where it increased replication speed, improved replication fork restart efficiency, reduced endogenous replication stress, minimized DNA breaks, and regulated genetic stability during DNA replication. In cellular pancreatic cancer models, high CDA expression correlated with resistance to DNA-damaging agents. Silencing CDA in patient-derived primary cultures in vitro and in orthotopic xenografts in vivo increased replication stress and sensitized pancreatic adenocarcinoma cells to oxaliplatin. This study sheds light on the role of CDA in pancreatic adenocarcinoma, offering insights into how this tumor type modulates replication stress. These findings suggest that CDA expression could potentially predict therapeutic efficacy and that targeting CDA induces intolerable levels of replication stress in cancer cells, particularly when combined with DNA-targeted therapies. SIGNIFICANCE: Cytidine deaminase reduces replication stress and regulates DNA replication to confer resistance to DNA-damaging drugs in pancreatic cancer, unveiling a molecular vulnerability that could enhance treatment response.


Asunto(s)
Adenocarcinoma , Citidina Desaminasa , Inhibidores de la Síntesis del Ácido Nucleico , Neoplasias Pancreáticas , Humanos , Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/metabolismo , Adenocarcinoma/patología , Citidina Desaminasa/metabolismo , ADN , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Replicación del ADN , Inhibidores de la Síntesis del Ácido Nucleico/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA