Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Drug Chem Toxicol ; 46(4): 634-639, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35603474

RESUMEN

The opioid agonist hydromorphone is indicated for the management of severe acute and chronic pain given that alternate treatments are insufficient. While the genotoxicity profile of hydromorphone is well investigated, little is known about the genotoxic potential of its impurities. In this study, 2,2-bishydromorphone was tested in silico and in vitro for both its mutagenic potential in an Ames test performed with Salmonella typhimurium and Escherichia coli tester strains up to a maximum concentration of 5 mg per plate in the absence and presence of metabolic activation. Furthermore, it was tested for its ability to induce micronuclei in TK6 cells in a micronucleus test up to a maximum concentration of 500 µg/mL with or without an exogenous metabolic activation system. 2,2-Bishydromorphone did not reveal any potential for inducing mutagenicity or clastogenicity under the conditions of the respective tests and is therefore considered non-mutagenic and non-clastogenic/aneugenic in vitro. These results are in line with negative in silico quantitative structure-activity relationship (QSAR) prediction for 2,2-bishydromorphone mutagenicity and clastogenicity and provide evidence of good correlation of in silico and in vitro data. Conclusively, these studies add important new clinically relevant information on the safety of hydromorphone as the impurity of 2,2-bishydromorphone is proven to be non-mutagenic and non-clastogenic.


Asunto(s)
Mutágenos , Relación Estructura-Actividad Cuantitativa , Pruebas de Micronúcleos , Mutágenos/toxicidad , Hidromorfona/toxicidad , Pruebas de Mutagenicidad/métodos , Daño del ADN
2.
Int J Toxicol ; 39(1): 39-44, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31777300

RESUMEN

The alkylating agent busulfan is used in conditioning treatment of chronic myelogenous or granulocytic leukemia prior to stem cell transplantations. Its cytotoxic activity results in primary damage or destruction of hematopoietic cells. While the toxicity of busulfan is well investigated, little is known about the toxic effects of its impurities. In this study, the effect of 4-day intravenous infusion (3 h/d) of 4.8 mg/kg/d busulfan and 0.49, 4.9, and 49 mg/kg/d busulfan impurity 5 (4-((methylsulfonyl)oxy)butyl acetate) was investigated in rats. Whereas busulfan elicited myelotoxic and hepatotoxic effects, no toxic effects were observed in animals receiving the impurity at dosages up to 10 times higher than busulfan. The highest impurity dose of 49 mg/kg/d is therefore considered the no-observed-adverse-effect level of busulfan impurity 5.


Asunto(s)
Acetatos/administración & dosificación , Antineoplásicos Alquilantes/administración & dosificación , Busulfano/administración & dosificación , Contaminación de Medicamentos , Animales , Esquema de Medicación , Femenino , Infusiones Intravenosas , Masculino , Nivel sin Efectos Adversos Observados , Ratas Wistar
3.
Int J Cancer ; 145(4): 901-915, 2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-30653260

RESUMEN

Endothelial lipase (LIPG) is a cell surface associated lipase that displays phospholipase A1 activity towards phosphatidylcholine present in high-density lipoproteins (HDL). LIPG was recently reported to be expressed in breast cancer and to support proliferation, tumourigenicity and metastasis. Here we show that severe oxidative stress leading to AMPK activation triggers LIPG upregulation, resulting in intracellular lipid droplet accumulation in breast cancer cells, which supports survival. Neutralizing oxidative stress abrogated LIPG upregulation and the concomitant lipid storage. In human breast cancer, high LIPG expression was observed in a limited subset of tumours and was significantly associated with shorter metastasis-free survival in node-negative, untreated patients. Moreover, expression of PLIN2 and TXNRD1 in these tumours indicated a link to lipid storage and oxidative stress. Altogether, our findings reveal a previously unrecognized role for LIPG in enabling oxidative stress-induced lipid droplet accumulation in tumour cells that protects against oxidative stress, and thus supports tumour progression.


Asunto(s)
Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Lipasa/metabolismo , Lípidos/fisiología , Estrés Oxidativo/fisiología , Línea Celular Tumoral , Progresión de la Enfermedad , Supervivencia sin Enfermedad , Femenino , Humanos , Metabolismo de los Lípidos/fisiología , Lipoproteínas HDL/metabolismo , Células MCF-7 , Persona de Mediana Edad , Regulación hacia Arriba/fisiología
4.
Biochim Biophys Acta ; 1821(9): 1256-68, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22178194

RESUMEN

Alterations in lipid metabolism and in the lipid composition of cellular membranes are linked to the pathology of numerous diseases including cancer. However, the influence of oncogene expression on cellular lipid profile is currently unknown. In this work we analyzed changes in lipid profiles that are induced in the course of ERBB2-expression mediated premature senescence. As a model system we used MCF-7 breast cancer cells with doxycycline-inducible expression of NeuT, an oncogenic ERBB2 variant. Affymetrix gene array data showed NeuT-induced alterations in the transcription of many enzymes involved in lipid metabolism, several of which (ACSL3, CHPT1, PLD1, LIPG, MGLL, LDL and NPC1) could be confirmed by quantitative realtime PCR. A study of the glycerophospholipid and lyso-glycerophospholipid profiles, obtained by high performance liquid chromatography coupled to Fourier-transform ion cyclotron resonance-mass spectrometry revealed senescence-associated changes in numerous lipid species, including mitochondrial lipids. The most prominent changes were found in PG(34:1), PG(36:1) (increased) and LPE(18:1), PG(40:7) and PI(36:1) (decreased). Statistical analysis revealed a general trend towards shortened phospholipid acyl chains in senescence and a significant trend to more saturated acyl chains in the class of phosphatidylglycerol. Additionally, the cellular cholesterol content was elevated and accumulated in vacuoles in senescent cells. These changes were accompanied by increased membrane fluidity. In mitochondria, loss of membrane potential along with altered intracellular distribution was observed. In conclusion, we present a comprehensive overview of altered cholesterol and glycerophospholipid patterns in senescence, showing that predominantly mitochondrial lipids are affected and lipid species less susceptible to peroxidation are increased.


Asunto(s)
Neoplasias de la Mama/metabolismo , Senescencia Celular , Genes erbB-2 , Glicerofosfolípidos/metabolismo , Metabolismo de los Lípidos , Receptor ErbB-2/biosíntesis , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Femenino , Glicerofosfolípidos/genética , Humanos , Mitocondrias/genética , Mitocondrias/metabolismo , Mitocondrias/patología , Receptor ErbB-2/genética , Vacuolas/genética , Vacuolas/metabolismo , Vacuolas/patología
5.
Antibiotics (Basel) ; 11(7)2022 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-35884216

RESUMEN

The validated SHIME model was used to assess the effect of repeated administration of two different lactulose dosages (5 g/d and 10 g/d) on the human gut microbiome during and following amoxicillin-clavulanic acid treatment. First, antibiotic treatment strongly decreased Bifidobacteriaceae levels from 54.4% to 0.6% and from 23.8% to 2.3% in the simulated proximal and distal colon, respectively, coinciding with a marked reduction in butyrate concentrations. Treatment with lactulose enhanced acetate and lactate levels during antibiotic treatment, likely through lactulose fermentation by Lachnospiraceae and Lactobacillaceae. One week after cessation of antibiotic treatment, Bifidobacteriaceae levels re-increased to 20.4% and 7.6% in the proximal and distal colon of the 5 g lactulose/d co-administered unit, as compared with 1.0% and 2.2% in the antibiotic-treated unit, and were even further stimulated upon extension of lactulose administration. Marked butyrogenic effects were observed upon prolonged lactulose supplementation, suggesting the establishment of cross-feeding interactions between Bifidobacteriaceae and butyrate producers. Furthermore, a limited Enterobacteriaceae outgrowth following antibiotic treatment was observed upon dosing with 10 g lactulose/d, indicating inhibition of pathogenic colonization by lactulose following antibiotic therapy. Overall, lactulose seems to be an interesting candidate for limiting the detrimental effects of amoxicillin-clavulanic acid on the human gut microbiome, though further studies are warranted to confirm these findings.

6.
Antibiotics (Basel) ; 11(11)2022 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-36358119

RESUMEN

Clostridioides difficile infection (CDI) is the leading cause of antibiotic-associated diarrhea and an important nosocomial infection with different severity degrees. Disruption of the gut microbiota by broad-spectrum antibiotics creates a proper environment for C. difficile colonization, proliferation, and clinical disease onset. Restoration of the gut microbial ecosystem through prebiotic interventions can constitute an effective complementary treatment of CDI. Using an adapted simulator of the human gut microbial ecosystem, the PathoGutTM SHIME, the effect of different long-term and repeated dose lactulose treatments was tested on C. difficile germination and growth in antibiotic-induced dysbiotic gut microbiota environments. The results showed that lactulose reduced the growth of viable C. difficile cells following clindamycin treatment, shifted the antibiotic-induced dysbiotic microbial community, and stimulated the production of health-promoting metabolites (especially butyrate). Recovery of the gut microenvironment by long-term lactulose administration following CDI was also linked to lactate production, decrease in pH and modulation of bile salt metabolism. At a structural level, lactulose showed a significant bifidogenic potential and restored key commensal members of the gut ecosystem such as Lactobacillaceae, Veillonellaceae and Lachnospiraceae. These results support further human intervention studies aiming to validate the in vitro beneficial effects of lactulose on gut microbiome recovery during antibiotic exposure and CDI.

7.
Breast Cancer Res ; 12(3): R44, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20584310

RESUMEN

INTRODUCTION: The purpose of this work was to study the prognostic influence in breast cancer of thioredoxin reductase 1 (TXNRD1) and thioredoxin interacting protein (TXNIP), key players in oxidative stress control that are currently evaluated as possible therapeutic targets. METHODS: Analysis of the association of TXNRD1 and TXNIP RNA expression with the metastasis-free interval (MFI) was performed in 788 patients with node-negative breast cancer, consisting of three individual cohorts (Mainz, Rotterdam and Transbig). Correlation with metagenes and conventional clinical parameters (age, pT stage, grading, hormone and ERBB2 status) was explored. MCF-7 cells with a doxycycline-inducible expression of an oncogenic ERBB2 were used to investigate the influence of ERBB2 on TXNRD1 and TXNIP transcription. RESULTS: TXNRD1 was associated with worse MFI in the combined cohort (hazard ratio = 1.955; P < 0.001) as well as in all three individual cohorts. In contrast, TXNIP was associated with better prognosis (hazard ratio = 0.642; P < 0.001) and similar results were obtained in all three subcohorts. Interestingly, patients with ERBB2-status-positive tumors expressed higher levels of TXNRD1. Induction of ERBB2 in MCF-7 cells caused not only an immediate increase in TXNRD1 but also a strong decrease in TXNIP. A subsequent upregulation of TXNIP as cells undergo senescence was accompanied by a strong increase in levels of reactive oxygen species. CONCLUSIONS: TXNRD1 and TXNIP are associated with prognosis in breast cancer, and ERBB2 seems to be one of the factors shifting balances of both factors of the redox control system in a prognostic unfavorable manner.


Asunto(s)
Neoplasias de la Mama/metabolismo , Proteínas Portadoras/metabolismo , Regulación Neoplásica de la Expresión Génica , Tiorredoxina Reductasa 1/metabolismo , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Proteínas Portadoras/genética , Estudios de Cohortes , Femenino , Estudios de Seguimiento , Perfilación de la Expresión Génica , Humanos , Immunoblotting , Técnicas para Inmunoenzimas , Persona de Mediana Edad , Análisis de Secuencia por Matrices de Oligonucleótidos , Pronóstico , Especies Reactivas de Oxígeno/metabolismo , Receptor ErbB-2/metabolismo , Tasa de Supervivencia , Tiorredoxina Reductasa 1/genética , Análisis de Matrices Tisulares , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA