Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
2.
Neuroimage ; 272: 120059, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-37001835

RESUMEN

Low-dimensional representations are increasingly used to study meaningful organizational principles within the human brain. Most notably, the sensorimotor-association axis consistently explains the most variance in the human connectome as its so-called principal gradient, suggesting that it represents a fundamental organizational principle. While recent work indicates these low dimensional representations are relatively robust, they are limited by modeling only certain aspects of the functional connectivity structure. To date, the majority of studies have restricted these approaches to the strongest connections in the brain, treating weaker or negative connections as noise despite evidence of meaningful structure among them. The present work examines connectivity gradients of the human connectome across a full range of connectivity strengths and explores the implications for outcomes of individual differences, identifying potential dependencies on thresholds and opportunities to improve prediction tasks. Interestingly, the sensorimotor-association axis emerged as the principal gradient of the human connectome across the entire range of connectivity levels. Moreover, the principal gradient of connections at intermediate strengths encoded individual differences, better followed individual-specific anatomical features, and was also more predictive of intelligence. Taken together, our results add to evidence of the sensorimotor-association axis as a fundamental principle of the brain's functional organization, since it is evident even in the connectivity structure of more lenient connectivity thresholds. These more loosely coupled connections further appear to contain valuable and potentially important information that could be used to improve our understanding of individual differences, diagnosis, and the prediction of treatment outcomes.


Asunto(s)
Conectoma , Humanos , Conectoma/métodos , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Individualidad , Inteligencia , Red Nerviosa/diagnóstico por imagen
3.
Neuroimage ; 263: 119609, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36064140

RESUMEN

The Brain Imaging Data Structure (BIDS) is a specification accompanied by a software ecosystem that was designed to create reproducible and automated workflows for processing neuroimaging data. BIDS Apps flexibly build workflows based on the metadata detected in a dataset. However, even BIDS valid metadata can include incorrect values or omissions that result in inconsistent processing across sessions. Additionally, in large-scale, heterogeneous neuroimaging datasets, hidden variability in metadata is difficult to detect and classify. To address these challenges, we created a Python-based software package titled "Curation of BIDS" (CuBIDS), which provides an intuitive workflow that helps users validate and manage the curation of their neuroimaging datasets. CuBIDS includes a robust implementation of BIDS validation that scales to large samples and incorporates DataLad--a version control software package for data--as an optional dependency to ensure reproducibility and provenance tracking throughout the entire curation process. CuBIDS provides tools to help users perform quality control on their images' metadata and identify unique combinations of imaging parameters. Users can then execute BIDS Apps on a subset of participants that represent the full range of acquisition parameters that are present, accelerating pipeline testing on large datasets.


Asunto(s)
Ecosistema , Programas Informáticos , Humanos , Flujo de Trabajo , Reproducibilidad de los Resultados , Neuroimagen/métodos
4.
Appetite ; 169: 105799, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34767841

RESUMEN

While classically linked to memory, the hippocampus is also a feeding behavior modulator due to its multiple interconnected pathways with other brain regions and expression of receptors for metabolic hormones. Here we tested whether variations in insulin sensitivity would be correlated with differential brain activation following exposure to palatable food cues, as well as with variations in implicit food memory in a cohort of healthy adolescents, some of whom were born small for gestational age (SGA). Homeostatic Model Assessment of Insulin Resistance (HOMA-IR) was positively correlated with activation in the cuneus, and negatively correlated with activation in the middle frontal lobe, superior frontal gyrus and precuneus when presented with palatable food images versus non-food images in healthy adolescents. Additionally, HOMA-IR and insulinemia were higher in participants with impaired food memory. SGA individuals had higher snack caloric density and greater chance for impaired food memory. There was also an interaction between the HOMA-IR and birth weight ratio influencing external eating behavior. We suggest that diminished insulin sensitivity correlates with activation in visual attention areas and inactivation in inhibitory control areas in healthy adolescents. Insulin resistance also associated with less consistency in implicit memory for a consumed meal, which may suggest lower ability to establish a dietary pattern, and can contribute to obesity. Differences in feeding behavior in SGA individuals were associated with insulin sensitivity and hippocampal alterations, suggesting that cognition and hormonal regulation are important components involved in their food intake modifications throughout life.


Asunto(s)
Resistencia a la Insulina , Adolescente , Glucemia/metabolismo , Encéfalo/fisiología , Señales (Psicología) , Edad Gestacional , Humanos , Insulina , Comidas , Obesidad/complicaciones
5.
Neuroimage ; 226: 117585, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33248256

RESUMEN

New large neuroimaging studies, such as the Adolescent Brain Cognitive Development study (ABCD) and Human Connectome Project (HCP) Development studies are adopting a new T1-weighted imaging sequence with prospective motion correction (PMC) in favor of the more traditional 3-Dimensional Magnetization-Prepared Rapid Gradient-Echo Imaging (MPRAGE) sequence. Here, we used a developmental dataset (ages 5-21, N = 348) from the Healthy Brain Network (HBN) Initiative to directly compare two widely used MRI structural sequences: one based on the Human Connectome Project (MPRAGE) and another based on the ABCD study (MPRAGE+PMC). We aimed to determine if the morphometric measurements obtained from both protocols are equivalent or if one sequence has a clear advantage over the other. The sequences were also compared through quality control measurements. Inter- and intra-sequence reliability were assessed with another set of participants (N = 71) from HBN that performed two MPRAGE and two MPRAGE+PMC sequences within the same imaging session, with one MPRAGE (MPRAGE1) and MPRAGE+PMC (MPRAGE+PMC1) pair at the beginning of the session and another pair (MPRAGE2 and MPRAGE+PMC2) at the end of the session. Intraclass correlation coefficients (ICC) scores for morphometric measurements such as volume and cortical thickness showed that intra-sequence reliability is the highest with the two MPRAGE+PMC sequences and lowest with the two MPRAGE sequences. Regarding inter-sequence reliability, ICC scores were higher for the MPRAGE1 - MPRAGE+PMC1 pair at the beginning of the session than the MPRAGE1 - MPRAGE2 pair, possibly due to the higher motion artifacts in the MPRAGE2 run. Results also indicated that the MPRAGE+PMC sequence is robust, but not impervious, to high head motion. For quality control metrics, the traditional MPRAGE yielded better results than MPRAGE+PMC in 5 of the 8 measurements. In conclusion, morphometric measurements evaluated here showed high inter-sequence reliability between the MPRAGE and MPRAGE+PMC sequences, especially in images with low head motion. We suggest that studies targeting hyperkinetic populations use the MPRAGE+PMC sequence, given its robustness to head motion and higher reliability scores. However, neuroimaging researchers studying non-hyperkinetic participants can choose either MPRAGE or MPRAGE+PMC sequences, but should carefully consider the apparent tradeoff between relatively increased reliability, but reduced quality control metrics when using the MPRAGE+PMC sequence.


Asunto(s)
Encéfalo/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Imagenología Tridimensional/métodos , Imagen por Resonancia Magnética/métodos , Adolescente , Niño , Preescolar , Conectoma , Femenino , Humanos , Masculino , Reproducibilidad de los Resultados , Relación Señal-Ruido , Adulto Joven
6.
Neuroimage ; 225: 117489, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33130272

RESUMEN

Multilayer network models have been proposed as an effective means of capturing the dynamic configuration of distributed neural circuits and quantitatively describing how communities vary over time. Beyond general insights into brain function, a growing number of studies have begun to employ these methods for the study of individual differences. However, test-retest reliabilities for multilayer network measures have yet to be fully quantified or optimized, potentially limiting their utility for individual difference studies. Here, we systematically evaluated the impact of multilayer community detection algorithms, selection of network parameters, scan duration, and task condition on test-retest reliabilities of multilayer network measures (i.e., flexibility, integration, and recruitment). A key finding was that the default method used for community detection by the popular generalized Louvain algorithm can generate erroneous results. Although available, an updated algorithm addressing this issue is yet to be broadly adopted in the neuroimaging literature. Beyond the algorithm, the present work identified parameter selection as a key determinant of test-retest reliability; however, optimization of these parameters and expected reliabilities appeared to be dataset-specific. Once parameters were optimized, consistent with findings from the static functional connectivity literature, scan duration was a much stronger determinant of reliability than scan condition. When the parameters were optimized and scan duration was sufficient, both passive (i.e., resting state, Inscapes, and movie) and active (i.e., flanker) tasks were reliable, although reliability in the movie watching condition was significantly higher than in the other three tasks. The minimal data requirement for achieving reliable measures for the movie watching condition was 20 min, and 30 min for the other three tasks. Our results caution the field against the use of default parameters without optimization based on the specific datasets to be employed - a process likely to be limited for most due to the lack of test-retest samples to enable parameter optimization.


Asunto(s)
Encéfalo/diagnóstico por imagen , Neuroimagen Funcional/métodos , Vías Nerviosas/diagnóstico por imagen , Adulto , Algoritmos , Encéfalo/fisiología , Conectoma , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Vías Nerviosas/fisiología , Reproducibilidad de los Resultados , Adulto Joven
7.
Neuroimage ; 222: 117232, 2020 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-32771618

RESUMEN

A common coordinate space enabling comparison across individuals is vital to understanding human brain organization and individual differences. By leveraging dimensionality reduction algorithms, high-dimensional fMRI data can be represented in a low-dimensional space to characterize individual features. Such a representative space encodes the functional architecture of individuals and enables the observation of functional changes across time. However, determining comparable functional features across individuals in resting-state fMRI in a way that simultaneously preserves individual-specific connectivity structure can be challenging. In this work we propose scalable joint embedding to simultaneously embed multiple individual brain connectomes within a common space that allows individual representations across datasets to be aligned. Using Human Connectome Project data, we evaluated the joint embedding approach by comparing it to the previously established orthonormal alignment model. Alignment using joint embedding substantially increased the similarity of functional representations across individuals while simultaneously capturing their distinct profiles, allowing individuals to be more discriminable from each other. Additionally, we demonstrated that the common space established using resting-state fMRI provides a better overlap of task-activation across participants. Finally, in a more challenging scenario - alignment across a lifespan cohort aged from 6 to 85 - joint embedding provided a better prediction of age (r2 = 0.65) than the prior alignment model. It facilitated the characterization of functional trajectories across lifespan. Overall, these analyses establish that joint embedding can simultaneously capture individual neural representations in a common connectivity space aligning functional data across participants and populations and preserve individual specificity.


Asunto(s)
Encéfalo/fisiología , Conectoma , Red Nerviosa/fisiología , Vías Nerviosas/fisiología , Adulto , Algoritmos , Conectoma/métodos , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Individualidad , Imagen por Resonancia Magnética/métodos , Masculino
8.
Acta Neurol Scand ; 142(3): 229-238, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32299120

RESUMEN

OBJECTIVE: Individuals with Parkinson's disease (PD) and freezing of gait (FOG) present peripheral and central sensitivity disturbances that impair motor performance. This study aimed to investigate long-term effects of plantar sensory stimulation on brain activity, brain connectivity, and gait velocity of individuals with PD and FOG. METHODS: Twenty-five participants were enrolled in this clinical trial (NCT02594540). Plantar sensory stimulation was delivered using the Automated Mechanical Peripheral Stimulation therapy (AMPS). Volunteers were randomly assigned to real or placebo AMPS groups and received eight sessions of treatment. The primary outcome was brain activity (task-based fMRI-active ankle dorsi-plantar flexion). Secondary outcomes were brain connectivity (resting state-RS fMRI) and gait velocity. fMRI was investigated on the left, right, and mid-sensory motor regions, left and right basal ganglia. RESULTS: No changes in brain activity were observed when task-based fMRI was analyzed. After real AMPS, RS functional connectivity between basal ganglia and sensory-related brain areas increased (insular and somatosensory cortices). Gait velocity also increased after real AMPS. A positive correlation was found between gait velocity and the increased connectivity between sensory, motor and supplementary motor cortices. CONCLUSION: Plantar sensory stimulation through AMPS was not able to modify brain activity. AMPS increased the RS brain connectivity mainly in areas related to sensory processing and sensorimotor integration. Plantar stimulation could be a way to improve plantar sensitivity and consequently ameliorate gait performance. However, the mechanisms behind the way AMPS influences brain pathways are still not completely known.


Asunto(s)
Pie , Vías Nerviosas/fisiopatología , Enfermedad de Parkinson/fisiopatología , Enfermedad de Parkinson/terapia , Estimulación Física/métodos , Anciano , Anciano de 80 o más Años , Ganglios Basales/fisiopatología , Método Doble Ciego , Femenino , Marcha , Trastornos Neurológicos de la Marcha/diagnóstico por imagen , Trastornos Neurológicos de la Marcha/fisiopatología , Trastornos Neurológicos de la Marcha/terapia , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Corteza Motora/fisiopatología , Vías Nerviosas/diagnóstico por imagen , Enfermedad de Parkinson/diagnóstico por imagen , Resultado del Tratamiento
10.
Commun Biol ; 7(1): 697, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38844612

RESUMEN

Brain connectome analysis suffers from the high dimensionality of connectivity data, often forcing a reduced representation of the brain at a lower spatial resolution or parcellation. This is particularly true for graph-based representations, which are increasingly used to characterize connectivity gradients, capturing patterns of systematic spatial variation in the functional connectivity structure. However, maintaining a high spatial resolution is crucial for enabling fine-grained topographical analysis and preserving subtle individual differences that might otherwise be lost. Here we introduce a computationally efficient approach to establish spatially fine-grained connectivity gradients. At its core, it leverages a set of landmarks to approximate the underlying connectivity structure at the full spatial resolution without requiring a full-scale vertex-by-vertex connectivity matrix. We show that this approach reduces computational time and memory usage while preserving informative individual features and demonstrate its application in improving brain-behavior predictions. Overall, its efficiency can remove computational barriers and enable the widespread application of connectivity gradients to capture spatial signatures of the connectome. Importantly, maintaining a spatially fine-grained resolution facilitates to characterize the spatial transitions inherent in the core concept of gradients of brain organization.


Asunto(s)
Encéfalo , Conectoma , Encéfalo/fisiología , Encéfalo/diagnóstico por imagen , Humanos , Masculino , Femenino , Red Nerviosa/fisiología , Imagen por Resonancia Magnética/métodos , Adulto
11.
JAMA Netw Open ; 7(2): e2355901, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38349653

RESUMEN

Importance: Few investigations have evaluated rates of brain-based magnetic resonance imaging (MRI) incidental findings (IFs) in large lifespan samples, their stability over time, or their associations with health outcomes. Objectives: To examine rates of brain-based IFs across the lifespan, their persistence, and their associations with phenotypic indicators of behavior, cognition, and health; to compare quantified motion with radiologist-reported motion and evaluate its associations with IF rates; and to explore IF consistency across multiple visits. Design, Setting, and Participants: This cross-sectional study included participants from the Nathan Kline Institute-Rockland Sample (NKI-RS), a lifespan community-ascertained sample, and the Healthy Brain Network (HBN), a cross-sectional community self-referred pediatric sample focused on mental health and learning disorders. The NKI-RS enrolled participants (ages 6-85 years) between March 2012 and March 2020 and had longitudinal participants followed up for as long as 4 years. The HBN enrolled participants (ages 5-21 years) between August 2015 and October 2021. Clinical neuroradiology MRI reports were coded for radiologist-reported motion as well as presence, type, and clinical urgency (category 1, no abnormal findings; 2, no referral recommended; 3, consider referral; and 4, immediate referral) of IFs. MRI reports were coded from June to October 2021. Data were analyzed from November 2021 to February 2023. Main Outcomes and Measures: Rates and type of IFs by demographic characteristics, health phenotyping, and motion artifacts; longitudinal stability of IFs; and Euler number in projecting radiologist-reported motion. Results: A total of 1300 NKI-RS participants (781 [60.1%] female; mean [SD] age, 38.9 [21.8] years) and 2772 HBN participants (976 [35.2%] female; mean [SD] age, 10.0 [3.5] years) had health phenotyping and neuroradiology-reviewed MRI scans. IFs were common, with 284 of 2956 children (9.6%) and 608 of 1107 adults (54.9%) having IFs, but rarely of clinical concern (category 1: NKI-RS, 619 [47.6%]; HBN, 2561 [92.4%]; category 2: NKI-RS, 647 [49.8%]; HBN, 178 [6.4%]; category 3: NKI-RS, 79 [6.1%]; HBN, 30 [1.1%]; category 4: NKI-RS: 12 [0.9%]; HBN, 6 [0.2%]). Overall, 46 children (1.6%) and 79 adults (7.1%) required referral for their IFs. IF frequency increased with age. Elevated blood pressure and BMI were associated with increased T2 hyperintensities and age-related cortical atrophy. Radiologist-reported motion aligned with Euler-quantified motion, but neither were associated with IF rates. Conclusions and Relevance: In this cross-sectional study, IFs were common, particularly with increasing age, although rarely clinically significant. While T2 hyperintensity and age-related cortical atrophy were associated with BMI and blood pressure, IFs were not associated with other behavioral, cognitive, and health phenotyping. Motion may not limit clinical IF detection.


Asunto(s)
Encéfalo , Hallazgos Incidentales , Adulto , Femenino , Humanos , Niño , Masculino , Estudios Transversales , Encéfalo/diagnóstico por imagen , Atrofia , Imagen por Resonancia Magnética
12.
Nat Commun ; 15(1): 3511, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664387

RESUMEN

Human cortical maturation has been posited to be organized along the sensorimotor-association axis, a hierarchical axis of brain organization that spans from unimodal sensorimotor cortices to transmodal association cortices. Here, we investigate the hypothesis that the development of functional connectivity during childhood through adolescence conforms to the cortical hierarchy defined by the sensorimotor-association axis. We tested this pre-registered hypothesis in four large-scale, independent datasets (total n = 3355; ages 5-23 years): the Philadelphia Neurodevelopmental Cohort (n = 1207), Nathan Kline Institute-Rockland Sample (n = 397), Human Connectome Project: Development (n = 625), and Healthy Brain Network (n = 1126). Across datasets, the development of functional connectivity systematically varied along the sensorimotor-association axis. Connectivity in sensorimotor regions increased, whereas connectivity in association cortices declined, refining and reinforcing the cortical hierarchy. These consistent and generalizable results establish that the sensorimotor-association axis of cortical organization encodes the dominant pattern of functional connectivity development.


Asunto(s)
Conectoma , Imagen por Resonancia Magnética , Corteza Sensoriomotora , Humanos , Adolescente , Femenino , Masculino , Adulto Joven , Niño , Corteza Sensoriomotora/fisiología , Corteza Sensoriomotora/diagnóstico por imagen , Preescolar , Red Nerviosa/fisiología , Red Nerviosa/diagnóstico por imagen , Vías Nerviosas/fisiología , Adulto , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/fisiología , Corteza Cerebral/crecimiento & desarrollo
13.
bioRxiv ; 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38915591

RESUMEN

Human cortical development follows a sensorimotor-to-association sequence during childhood and adolescence1-6. The brain's capacity to enact this sequence over decades indicates that it relies on intrinsic mechanisms to regulate inter-regional differences in the timing of cortical maturation, yet regulators of human developmental chronology are not well understood. Given evidence from animal models that thalamic axons modulate windows of cortical plasticity7-12, here we evaluate the overarching hypothesis that structural connections between the thalamus and cortex help to coordinate cortical maturational heterochronicity during youth. We first introduce, cortically annotate, and anatomically validate a new atlas of human thalamocortical connections using diffusion tractography. By applying this atlas to three independent youth datasets (ages 8-23 years; total N = 2,676), we reproducibly demonstrate that thalamocortical connections develop along a maturational gradient that aligns with the cortex's sensorimotor-association axis. Associative cortical regions with thalamic connections that take longest to mature exhibit protracted expression of neurochemical, structural, and functional markers indicative of higher circuit plasticity as well as heightened environmental sensitivity. This work highlights a central role for the thalamus in the orchestration of hierarchically organized and environmentally sensitive windows of cortical developmental malleability.

14.
Sci Data ; 10(1): 554, 2023 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-37612297

RESUMEN

In this work, we present a dataset that combines functional magnetic imaging (fMRI) and electroencephalography (EEG) to use as a resource for understanding human brain function in these two imaging modalities. The dataset can also be used for optimizing preprocessing methods for simultaneously collected imaging data. The dataset includes simultaneously collected recordings from 22 individuals (ages: 23-51) across various visual and naturalistic stimuli. In addition, physiological, eye tracking, electrocardiography, and cognitive and behavioral data were collected along with this neuroimaging data. Visual tasks include a flickering checkerboard collected outside and inside the MRI scanner (EEG-only) and simultaneous EEG-fMRI recordings. Simultaneous recordings include rest, the visual paradigm Inscapes, and several short video movies representing naturalistic stimuli. Raw and preprocessed data are openly available to download. We present this dataset as part of an effort to provide open-access data to increase the opportunity for discoveries and understanding of the human brain and evaluate the correlation between electrical brain activity and blood oxygen level-dependent (BOLD) signals.


Asunto(s)
Imagen por Resonancia Magnética , Neuroimagen , Adulto , Humanos , Persona de Mediana Edad , Adulto Joven , Encéfalo/diagnóstico por imagen , Electrocardiografía , Electroencefalografía
15.
bioRxiv ; 2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37645999

RESUMEN

Neuroimaging research faces a crisis of reproducibility. With massive sample sizes and greater data complexity, this problem becomes more acute. Software that operates on imaging data defined using the Brain Imaging Data Structure (BIDS) - BIDS Apps - have provided a substantial advance. However, even using BIDS Apps, a full audit trail of data processing is a necessary prerequisite for fully reproducible research. Obtaining a faithful record of the audit trail is challenging - especially for large datasets. Recently, the FAIRly big framework was introduced as a way to facilitate reproducible processing of large-scale data by leveraging DataLad - a version control system for data management. However, the current implementation of this framework was more of a proof of concept, and could not be immediately reused by other investigators for different use cases. Here we introduce the BIDS App Bootstrap (BABS), a user-friendly and generalizable Python package for reproducible image processing at scale. BABS facilitates the reproducible application of BIDS Apps to large-scale datasets. Leveraging DataLad and the FAIRly big framework, BABS tracks the full audit trail of data processing in a scalable way by automatically preparing all scripts necessary for data processing and version tracking on high performance computing (HPC) systems. Currently, BABS supports jobs submissions and audits on Sun Grid Engine (SGE) and Slurm HPCs with a parsimonious set of programs. To demonstrate its scalability, we applied BABS to data from the Healthy Brain Network (HBN; n=2,565). Taken together, BABS allows reproducible and scalable image processing and is broadly extensible via an open-source development model.

16.
Front Neuroinform ; 17: 1207721, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37404336

RESUMEN

Collaborative neuroimaging research is often hindered by technological, policy, administrative, and methodological barriers, despite the abundance of available data. COINSTAC (The Collaborative Informatics and Neuroimaging Suite Toolkit for Anonymous Computation) is a platform that successfully tackles these challenges through federated analysis, allowing researchers to analyze datasets without publicly sharing their data. This paper presents a significant enhancement to the COINSTAC platform: COINSTAC Vaults (CVs). CVs are designed to further reduce barriers by hosting standardized, persistent, and highly-available datasets, while seamlessly integrating with COINSTAC's federated analysis capabilities. CVs offer a user-friendly interface for self-service analysis, streamlining collaboration, and eliminating the need for manual coordination with data owners. Importantly, CVs can also be used in conjunction with open data as well, by simply creating a CV hosting the open data one would like to include in the analysis, thus filling an important gap in the data sharing ecosystem. We demonstrate the impact of CVs through several functional and structural neuroimaging studies utilizing federated analysis showcasing their potential to improve the reproducibility of research and increase sample sizes in neuroimaging studies.

17.
bioRxiv ; 2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37214791

RESUMEN

Collaborative neuroimaging research is often hindered by technological, policy, administrative, and methodological barriers, despite the abundance of available data. COINSTAC is a platform that successfully tackles these challenges through federated analysis, allowing researchers to analyze datasets without publicly sharing their data. This paper presents a significant enhancement to the COINSTAC platform: COINSTAC Vaults (CVs). CVs are designed to further reduce barriers by hosting standardized, persistent, and highly-available datasets, while seamlessly integrating with COINSTAC's federated analysis capabilities. CVs offer a user-friendly interface for self-service analysis, streamlining collaboration and eliminating the need for manual coordination with data owners. Importantly, CVs can also be used in conjunction with open data as well, by simply creating a CV hosting the open data one would like to include in the analysis, thus filling an important gap in the data sharing ecosystem. We demonstrate the impact of CVs through several functional and structural neuroimaging studies utilizing federated analysis showcasing their potential to improve the reproducibility of research and increase sample sizes in neuroimaging studies.

18.
Hum Brain Mapp ; 33(12): 2843-55, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21976411

RESUMEN

Despite intensive study, the role of the dorsal medial frontal cortex (dMFC) in error monitoring and conflict processing remains actively debated. The current experiment manipulated conflict type (stimulus conflict only or stimulus and response selection conflict) and utilized a novel modeling approach to isolate error and conflict variance during a multimodal numeric Stroop task. Specifically, hemodynamic response functions resulting from two statistical models that either included or isolated variance arising from relatively few error trials were directly contrasted. Twenty-four participants completed the task while undergoing event-related functional magnetic resonance imaging on a 1.5-Tesla scanner. Response times monotonically increased based on the presence of pure stimulus or stimulus and response selection conflict. Functional results indicated that dMFC activity was present during trials requiring response selection and inhibition of competing motor responses, but absent during trials involving pure stimulus conflict. A comparison of the different statistical models suggested that relatively few error trials contributed to a disproportionate amount of variance (i.e., activity) throughout the dMFC, but particularly within the rostral anterior cingulate gyrus (rACC). Finally, functional connectivity analyses indicated that an empirically derived seed in the dorsal ACC/pre-SMA exhibited strong connectivity (i.e., positive correlation) with prefrontal and inferior parietal cortex but was anti-correlated with the default-mode network. An empirically derived seed from the rACC exhibited the opposite pattern, suggesting that sub-regions of the dMFC exhibit different connectivity patterns with other large scale networks implicated in internal mentations such as daydreaming (default-mode) versus the execution of top-down attentional control (fronto-parietal).


Asunto(s)
Atención/fisiología , Conflicto Psicológico , Lóbulo Frontal/fisiología , Modelos Neurológicos , Desempeño Psicomotor/fisiología , Adulto , Mapeo Encefálico , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Pruebas Neuropsicológicas , Tiempo de Reacción/fisiología
19.
Clin Trials ; 9(5): 596-604, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22801557

RESUMEN

BACKGROUND: A reliable and meaningful quantitative index of success is paramount in the trial of any new treatment. However, existing methods for defining response and remission for treatments tested for psychiatric disorders are limited in that they often minimize the variance in change over time among individual patients and generally use arbitrarily chosen levels of functioning at specified times during treatment. PURPOSE: To suggest and determine the properties of an alternative measure of treatment success, the Illness Density Index (IDI), that may be more sensitive to fluctuations in symptoms over the course of treatment compared to existing measures. METHODS: We examined data from 64 depressed patients with multiple assessments of the Hamilton Depression Rating Scale (HDRS) over 12 weeks of randomized treatment in order to compare and contrast varying numerical definitions of response and remission, including percent change and linear slope over time. RESULTS: Examination of the indices comparing the within-sample rank of individual patients revealed that these indices agree in cases where patients have little or no response as well as clear and sustained response, while they differ in patients who have a slow (or late) response as well as relapse during the treatment course. LIMITATIONS: The measure may not be useful for all types of studies, especially short-term treatment trials. CONCLUSIONS: The IDI is highly correlated with both categorical (e.g., remission) and continuous (e.g., percent change) definitions of treatment success. Furthermore, it differentiates certain trajectories of change that current definitions do not. Thus, the proposed index may be a valuable addition to current measures of efficacy, especially when trying to identify biological substrates of illness or predictors of long-term outcome.


Asunto(s)
Trastornos Mentales/terapia , Modelos Estadísticos , Gravedad del Paciente , Ensayos Clínicos Controlados Aleatorios como Asunto/métodos , Adulto , Antidepresivos/uso terapéutico , Citalopram/uso terapéutico , Terapia Cognitivo-Conductual , Trastorno Depresivo Mayor/terapia , Femenino , Humanos , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Tamaño de la Muestra , Resultado del Tratamiento
20.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 3166-3169, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-36086075

RESUMEN

Attention-deficit hyperactivity disorder (ADHD) affects at least 5% of the world population and can disturb normal development causing serious issues in adulthood. Therefore, it is important to develop tools to help detecting ADHD so that treatment can start as soon as possible. Plus, the differentiation of ADHD in its subtypes is important to define the recommended treatment. Here we present original research to investigate the hypothesis of using a Spiking Neural Networks (SNN) EEG signals classifier for automated diagnostic of ADHD subtypes. This research used data from 243 patients and healthy volunteers acquired as part of the Healthy Brain Network. These resting state EEG signals were collected from 5-minutes scan with a 128 channel 500 Hz system. For benchmarking, we present a comparison of the SNN performance with a support vector machine, a k-nearest neighborhood, a random forest algorithm and a multi-layer perceptron. We present experiments for both the diagnostics of ADHD and for detecting which ADHD subtype the patient has. SNN presented a 72.00% accuracy for detecting ADHD surpassing all the other techniques by 9.1 % and 68% in detecting if the subject is a member of the Combined ADHD, Inattentive ADHD or control groups (18% better than the second-best technique). Clinical Relevance - This work has shown a resource that can be useful allied to other tools to help diagnosing ADHD and its subtypes.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Adulto , Trastorno por Déficit de Atención con Hiperactividad/diagnóstico , Encéfalo , Electroencefalografía/métodos , Humanos , Redes Neurales de la Computación , Máquina de Vectores de Soporte
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA