Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Molecules ; 27(16)2022 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-36014346

RESUMEN

Pollution by dyes and heavy metals is one of the main concerns at the environmental level due to their toxicity and inefficient elimination by traditional water treatment. Orange peel (OP) without any treatment was applied to effectively eliminate methylene blue (MB) and cadmium ions (Cd2+) in mono- and multicomponent systems. Although the single adsorption processes for MB and Cd2+ have been investigated, the effects and mechanisms of interactions among multicomponent systems are still unclear. Batch experiments showed that in monocomponent systems, the maximum adsorption capacities were 0.7824 mmol g-1 for MB and 0.2884 mmol g-1 for Cd2+, while in multicomponent systems (Cd2+ and MB), both contaminants competed for the adsorption sites on OP. Particularly, a synergic effect was observed since the adsorption capacity of Cd2+ increased compared to the monocomponent system. Results of desorption and adsorbent reuse confirmed that the adsorbent presents good regeneration performance. The low cost of this material and its capacity for the individual or simultaneous removal of Cd2+ and MB in aqueous solutions makes it a potential adsorbent for polluted water treatment processes.


Asunto(s)
Citrus sinensis , Contaminantes Químicos del Agua , Purificación del Agua , Adsorción , Cadmio , Concentración de Iones de Hidrógeno , Cinética , Azul de Metileno , Aguas Residuales , Purificación del Agua/métodos
2.
J Environ Manage ; 281: 111871, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33385896

RESUMEN

Manganese ferrite solid nanospheres (MSNs) were prepared by a solvothermal method and calcined at various temperatures up to 500 °C. Their surface area, morphology, particle size, weight change during calcination, surface coordination number of metal ions, oxidation state, crystal structure, crystallite size, and magnetic properties were studied. The MSNs were used as catalysts to activate potassium peroxymonosulfate (PMS) for the oxidative degradation of para-nitrophenol (PNP) from water and for the oxidation of n-C7 asphaltenes in flowing air at atmospheric (0.084 MPa) and high pressure (6 MPa). Mn was in oxidation states (II) and (III) at calcination temperature of 200 °C, and the crystalline structure corresponded to jacobsite. Mn was in oxidation states (III) and (IV) at 350 °C and in oxidation states (II), (III), and (IV) at 500 °C, and the crystalline structure was maghemite at both temperatures. MSN catalysts generated hydroxyl (HO·) and sulfate (SO4·-) radicals in the PMS activation and generated HO· radicals in the n-C7 asphaltene oxidation. In both reactions, the best catalyst was MSN calcined at 350 °C (MSN350), because it has the highest concentration of Mn(III) in octahedral B sites, which are directly exposed to the catalyst surface, and the largest total and lattice oxygen contents, favoring oxygen mobility for Mn redox cycles. The MSN350 sample reduces the decomposition temperature of n-C7 asphaltenes from 430 to 210 °C at 0.084 MPa and from 370 to 200 °C at 6.0 MPa. In addition, it reduces the effective activation energy by approximately 77.6% in the second combustion (SC) region, where high-temperature oxidation reactions take place.


Asunto(s)
Nanosferas , Catálisis , Nitrofenoles , Oxidación-Reducción , Peróxidos , Hidrocarburos Policíclicos Aromáticos
3.
Molecules ; 24(18)2019 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-31546753

RESUMEN

The main objective of this study is to develop a novel dual-purpose material based on carbon xerogel microspheres (CXMs) that permits the delayed release of cannabidiol (CBD) and the removal of aflatoxin. The CXMs were prepared by the sol-gel method and functionalized with phosphoric acid (CXMP) and melamine (CXMN). The support and the modified materials were characterized by scanning electronic microscopy (SEM), N2 adsorption at -196 °C, X-ray photoelectron spectroscopy (XPS), and zeta potential. For the loading of the cannabidiol (CBD) in the porous samples, batch-mode adsorption experiments at 25 °C were performed, varying the concentration of CBD. The desorption kinetics was performed at two conditions for simulating the gastric (pH of 2.1) and intestinal (pH of 7.4) conditions at 37 °C based on in vitro CBD release. Posteriorly, the samples obtained after desorption were used to study aflatoxin removal, which was evaluated through adsorption experiments at pH = 7.4 and 37 °C. The adsorption isotherms of CBD showed a type I(b) behavior, with the adsorbed uptake being higher for the support than for the modified materials with P and N. Meanwhile, the desorption kinetics of CBD at gastric conditions indicated release values lower than 8%, and the remaining amount was desorbed at pH = 7.4 in three hours until reaching 100% based on the in vitro experiments. The results for aflatoxin showed total removal in less than 30 min for all the materials evaluated. This study opens a broader landscape in which to develop dual-purpose materials for the delayed release of CBD, improving its bioavailability and allowing aflatoxin removal in gastric conditions.


Asunto(s)
Aflatoxinas/aislamiento & purificación , Cannabidiol/farmacología , Carbono/química , Microesferas , Adsorción , Preparaciones de Acción Retardada/farmacología , Cinética , Nitrógeno/química , Electricidad Estática , Temperatura
4.
Molecules ; 23(7)2018 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-29937532

RESUMEN

The primary objective of this study is the synthesis of nanocapsules (NC) that allow the reduction of the adsorption process of surfactant over the porous media in enhanced oil recovery processes. Nanocapsules were synthesized through the nanoprecipitation method by encapsulating commercial surfactants Span 20 and Petro 50, and using type II resins isolated from vacuum residue as a shell. The NC were characterized using dynamic light scattering, transmission electron microscopy, Fourier transform infrared, solvency tests, softening point measurements and entrapment efficiency. The obtained NC showed spherical geometry with sizes of 71 and 120 nm for encapsulated Span 20 (NCS20), and Petro 50 surfactant (NCP50), respectively. Also, the NCS20 is composed of 90% of surfactant and 10% of type II resins, while the NCP50 material is 94% of surfactant and 6% of the shell. Nanofluids of nanocapsules dispersed in deionized water were prepared for evaluating the nanofluid­sandstone interaction from adsorption phenomena using a batch-mode method, contact angle measurements, and FTIR analysis. The results showed that NC adsorption was null at the different conditions of temperatures evaluated of 25, 50, and 70 °C, and stirring velocities up to 10,000 rpm. IFT measurements showed a reduction from 18 to 1.62 and 0.15 mN/m for the nanofluids with 10 mg/L of NCS20, and NCP50 materials, respectively. Displacements tests were conducted using a 20 °API crude oil in a quarter five-spot pattern micromodel and showed an additional oil recovery of 23% in comparison with that of waterflooding, with fewer pore volumes injected than when using a dissolved surfactant.


Asunto(s)
Aceites Industriales/análisis , Nanocápsulas/química , Yacimiento de Petróleo y Gas , Resinas Sintéticas/química , Tensoactivos/química , Adsorción , Composición de Medicamentos/métodos , Humanos , Ensayo de Materiales , Nanocápsulas/ultraestructura , Porosidad , Extracción en Fase Sólida/instrumentación , Extracción en Fase Sólida/métodos , Temperatura , Agua/química
5.
ACS Omega ; 9(20): 22031-22042, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38799315

RESUMEN

Microfluidic models have become essential instruments for studying enhanced oil recovery techniques through fluid and chemical injection into micromodels to observe interactions with pore structures and resident fluids. The widespread use of cost-effective lab-on-a-chip devices, known for efficient data extraction and minimal reagent usage, has driven demand for efficient data management methods crucial for high-performance data and image analyses. This article introduces a semiautomatic method for calculating oil recovery in polymeric nanofluid flooding experiments based on the background subtraction (BSEO). It employs the background subtraction technique, generating a foreground binary mask to detect injected fluids represented as pixel areas. The pixel difference is then compared to a threshold value to determine whether the given pixel is foreground or background. Moreover, the proposed method compares its performance with two other representative methods: the ground truth (manual segmentation) and Fiji-ImageJ software. The experiments yielded promising results. Low values of mean-squared error (MSE), mean absolute error (MAE), and root-mean-squared error (RMSE) indicate minimal prediction errors, while a substantial coefficient of determination (R2) of 98% highlights the strong correlation between the method's predictions and the observed outcomes. In conclusion, the presented method emphasizes the viability of BSEO as a robust alternative, offering the advantages of reduced computational resource usage and faster processing times.

6.
Sci Rep ; 14(1): 7468, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38553487

RESUMEN

Among the Enhanced Oil Recovery (EOR) methods, gas-based EOR methods are very popular all over the world. The gas injection has a high ability to increase microscopic sweep efficiency and can increase production efficiency well. However, it should be noted that in addition to all the advantages of these methods, they have disadvantages such as damage due to asphaltene deposition, unfavorable mobility ratio, and reduced efficiency of macroscopic displacement. In this paper, the gas injection process and its challenges were investigated. Then the overcoming methods of these challenges were investigated. To inhibit asphaltene deposition during gas injection, the use of nanoparticles was proposed, which were examined in two categories: liquid-soluble and gas-soluble, and the limitations of each were examined. Various methods were used to overcome the problem of unfavorable mobility ratio and their advantages and disadvantages were discussed. Gas-phase modification has the potential to reduce the challenges and limitations of direct gas injection and significantly increase recovery efficiency. In the first part, the introduction of gas injection and the enhanced oil recovery mechanisms during gas injection were mentioned. In the next part, the challenges of gas injection, which included unfavorable mobility ratio and asphaltene deposition, were investigated. In the third step, gas-phase mobility control methods investigate, emphasizing thickeners, thickening mechanisms, and field applications of mobility control methods. In the last part, to investigate the effect of nanoparticles on asphaltene deposition and reducing the minimum miscible pressure in two main subsets: 1- use of nanoparticles indirectly to prevent asphaltene deposition and reduce surface tension and 2- use of nanoparticles as a direct asphaltene inhibitor and Reduce MMP of the gas phase in crude oil was investigated.

7.
Polymers (Basel) ; 16(2)2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38257006

RESUMEN

This paper presents the methodology for synthesizing and characterizing two carboxymethyl EOR-grade Scleroglucans (CMS-A and CMS-B). An O-Alkylation reaction was used to insert a hydrophilic group (monochloroacetic acid-MCAA) into the biopolymer's anhydroglucose subunits (AGUs). The effect of the degree of the carboxymethyl substitution on the rheology and thermal stability of the Scleroglucan (SG) was also evaluated. Simultaneous thermal analysis (STA/TGA-DSC), differential scanning calorimetry (DSC), X-ray Diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, Scanning Electron Microscopy, and Energy Dispersive Spectroscopy (SEM/EDS) were employed to characterize both CMS products. FTIR analysis revealed characteristic peaks corresponding to the carboxymethyl functional groups, confirming the modification. Also, SEM analysis provided insights into the structural changes in the polysaccharide after the O-Alkylation reaction. TGA results showed that the carboxymethylation of SG lowered its dehydroxylation temperature but increased its thermal stability above 300 °C. The CMS products and SG exhibited a pseudoplastic behavior; however, lower shear viscosities and relaxation times were observed for the CMS products due to the breakage of the SG triple helix for the chemical modification. Despite the viscosity results, the modified Scleroglucans are promising candidates for developing new engineering materials for EOR processes.

8.
Nanomaterials (Basel) ; 14(9)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38727383

RESUMEN

This study aimed to develop and implement a nanotechnology-based alternative to traditional tracers used in the oil and gas industry for assessing interwell connectivity. A simple and rapid hydrothermal protocol for synthesizing carbon quantum dots (CQDs) using agroindustry waste was implemented. Three commercial CQDs were employed (CQDblue, CQDgreen, and CQDred); the fourth was synthesized from orange peel (CQDop). The CQDs from waste and other commercials with spherical morphology, nanometric sizes less than 11 nm in diameter, and surface roughness less than 3.1 nm were used. These tracers demonstrated high colloidal stability with a negative zeta potential, containing carbonyl-type chemical groups and unsaturations in aromatic structures that influenced their optical behavior. All materials presented high colloidal stability with negative values of charge z potential between -17.8 and -49.1. Additionally, individual quantification of these tracers is feasible even in scenarios where multiple CQDs are present in the effluent with a maximum percentage of interference of 15.5% for CQDop in the presence of the other three nanotracers. The CQDs were injected into the field once the technology was insured under laboratory conditions. Monitoring the effluents allowed the determination of connectivity for five first-line producer wells. This study enables the application of CQDs in the industry, particularly in fields where the arrangement of injector and producer wells is intricate, requiring the use of multiple tracers for a comprehensive description of the system.

9.
Nanomaterials (Basel) ; 14(6)2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38535647

RESUMEN

In this study, two new nanohybrids (NH-A and NH-B) were synthesized through carbodiimide-assisted coupling. The reaction was performed between carboxymethyl-scleroglucans (CMS-A and CMS-B) with different degrees of substitution and commercial amino-functionalized silica nanoparticles using 4-(dimethylamino)-pyridine (DMAP) and N,N'-dicyclohexylcarbodiimide (DCC) as catalysts. The morphology and properties of the nanohybrids were investigated by using transmission (TEM) and scanning electron microscopy (SEM), electron-dispersive scanning (EDS), attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FT-IR), X-ray photoelectron spectroscopy (XPS), powder X-ray diffraction (XRD), inductively coupled plasma atomic emission spectroscopy (ICP-OES), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and dynamic light scattering (DLS). The nanohybrids exhibited differences in structure due to the incorporation of polyhedral oligomeric silsesquioxane (POSS) materials. The results reveal that hybrid nanomaterials exhibit similar thermal properties but differ in morphology, chemical structure, and crystallinity properties. Finally, a viscosity study was performed on the newly obtained nanohybrid materials; viscosities of nanohybrids increased significantly in comparison to the carboxymethyl-scleroglucans, with a viscosity difference of 7.2% for NH-A and up to 32.6% for NH-B.

10.
Nanomaterials (Basel) ; 14(2)2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38251121

RESUMEN

Biopolymers emerge as promising candidates for enhanced oil recovery (EOR) applications due to their molecular structures, which exhibit better stability than polyacrylamides under harsh conditions. Nonetheless, biopolymers are susceptible to oxidation and biological degradation. Biopolymers reinforced with nanoparticles could be a potential solution to the issue. The nanofluids' stability and performance depend on the nanoparticles' properties and the preparation method. The primary objective of this study was to evaluate the effect of the preparation method and the nanoparticle type (SiO2, Al2O3, and TiO2) on the viscosity and stability of the scleroglucan (SG). The thickening effect of the SG solution was improved by adding all NPs due to the formation of three-dimensional structures between the NPs and the SG chains. The stability test showed that the SG + Al2O3 and SG + TiO2 nanofluids are highly unstable, but the SG + SiO2 nanofluids are highly stable (regardless of the preparation method). According to the ANOVA results, the preparation method and standing time influence the nanofluid viscosity with a statistical significance of 95%. On the contrary, the heating temperature and NP type are insignificant. Finally, the nanofluid with the best performance was 1000 ppm of SG + 100 ppm of SiO2_120 NPs prepared by method II.

11.
Nanomaterials (Basel) ; 14(8)2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38668170

RESUMEN

Scleroglucan (SG) is resistant to harsh reservoir conditions such as high temperature, high shear stresses, and the presence of chemical substances. However, it is susceptible to biological degradation because bacteria use SG as a source of energy and carbon. All degradation effects lead to viscosity loss of the SG solutions, affecting their performance as an enhanced oil recovery (EOR) polymer. Recent studies have shown that nanoparticles (NPs) can mitigate these degradative effects. For this reason, the EOR performance of two new nanohybrids (NH-A and NH-B) based on carboxymethyl-scleroglucan and amino-functionalized silica nanoparticles was studied. The susceptibility of these products to chemical, mechanical, and thermal degradation was evaluated following standard procedures (API RP 63), and the microbial degradation was assessed under reservoir-relevant conditions (1311 ppm and 100 °C) using a bottle test system. The results showed that the chemical reactions for the nanohybrids obtained modified the SG triple helix configuration, impacting its viscosifying power. However, the nanohybrid solutions retained their viscosity during thermal, mechanical, and chemical degradation experiments due to the formation of a tridimensional network between the nanoparticles (NPs) and the SG. Also, NH-A and NH-B solutions exhibited bacterial control because of steric hindrances caused by nanoparticle modifications to SG. This prevents extracellular glucanases from recognizing the site of catalysis, limiting free glucose availability and generating cell death due to substrate depletion. This study provides insights into the performance of these nanohybrids and promotes their application in reservoirs with harsh conditions.

12.
Nanomaterials (Basel) ; 13(3)2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36770349

RESUMEN

The objective of this study is to evaluate the role of nanoparticles with different chemical structures in completion fluids (CF) in providing a positive dual effect for well stimulation and clay swelling damage inhibition. Six types of commercial (C) or synthesized (S) nanoparticles have been incorporated into a commercial completion fluid. Doses varied between 100 and 500 mg·L-1. CF-nanoparticles were evaluated by fluid-fluid, fluid-nanoparticle, and fluid-rock interactions. The adsorption isotherms show different degrees of affinity, which impacts on the reduction of the interfacial tension between the CF and the reservoir fluids. Fluid-fluid interactions based on interfacial tension (IFT) measurements suggest that positively charged nanoparticles exhibit high IFT reductions. Based on contact angle measurements, fluid-rock interactions suggest that ZnO-S, SiO2-C, SiO2-S, and ZrO2 can adequately promote water-wet rock surfaces compared with other nanomaterials. According to the capillary number, ZnO-S and MgO-S have a higher capacity to reduce both interfacial and surface restrictions for crude oil production, suggesting that completion fluid with nanoparticles (NanoCF) can function as a stimulation agent. The clay swelling inhibition test in the presence of ZnO-S-CTAB and MgO-S-CTAB nanoparticles showed a 28.6% decrease in plastic viscosity (PV), indicating a reduction in clay swelling. The results indicate that a high-clay environment can meet the completion fluid's requirements. They also indicate that the degree of clay swelling inhibition of the nanoparticles depends on their chemical nature and dosage. Finally, displacement tests revealed that CF with nanoparticles increased the oil linear displacement efficiency.

13.
ACS Omega ; 8(46): 43698-43707, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-38027358

RESUMEN

Cannabidiol (CBD) has significant therapeutic potential; nevertheless, its advance as an effective drug by the pharmaceutical business is hindered by its inherent characteristics, such as low bioavailability, low water solubility, and variable pharmacokinetic profiles. This research aimed to develop nanoliposomes using an easy and low-cost method to improve the hydrosolubility of CBD and achieve a controlled delivery of the active principle under relevant physiological conditions from the mouth to the intestine; the cytotoxic and antitumor activities were also evaluated. To achieve the objective, core-shell nanoliposomes based on CBD were synthesized in three easy steps and characterized in terms of shape, size, surface chemistry, thermal capacity, and surface charge density through transmission electron microscopy (TEM), dynamic light scattering (DLS), Fourier transform infrared (FTIR), thermogravimetric analysis (TGA), and potential charge (PZ), respectively. CBD-controlled delivery trials were carried out under simulated mouth-duodenal conditions and fitted to Korsmeyer-Peppas and Noyes-Whitney models to conclude about the pharmacokinetics of CBD from nano-CBD. Cytotoxicity studies on nonmalignant human keratinocytes (HaCaT) were carried out to evaluate its safety and the recommended consumption dose, and finally, the antiproliferative capacity of nano-CBD on human colon carcinoma cells (SW480) was determined as beginning proposal for cancer treatment. The characterization results verified the water solubility for the CBD nanoencapsulated, the core-shell structure, the size in the nanometric regime, and the presence of the synthesis components. The dissolution rate at duodenal conditions was higher than that in buccal and stomach environments, respectively, and this behavior was associated with the shell (lecithin) chemical structure, which destabilizes at pH above 7.2, allowing the release by non-Fickian diffusion of CBD as corroborated by the Korsmeyer-Peppas model. In vitro biological tests revealed the innocuousness and cyto-security of nano-CBD up to 1000 mg·L-1 when evaluated on HaCaT cells and concentrations higher than 1000 mg·L-1 showed antitumor activity against human colon carcinoma cells (SW480) taking the first step as a chemotherapeutic proposal. These results are unprecedented and propose a selective delivery system based on nano-CBD at low cost and that provides a new form of administration and chemo treatment.

14.
ACS Omega ; 8(37): 33289-33298, 2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37744863

RESUMEN

Wax deposition in high-wax (waxy) crude oil has been an important challenge in the oil and gas industry due to the repercussions in flow assurance during oil extraction and transportation. However, the nanotechnology has emerged as a potential solution for the optimization of conventional wax removal and/or inhibition processes due to its exceptional performance in the alteration of wax morphology and co-crystallization behavior. In this sense, this study aims to study the performance of two commercial wax inhibitor treatments (WT1 and WT2) on the wax formation and crystallization due to the addition of SiO2 nanoparticles. Differential scanning calorimetry experiments and cold finger tests were carried out to study the effect of the WT on wax appearance temperature (WAT) and the wax inhibition efficiency (WIE) in a scenario with an initial temperature difference. In the first stage, the behavior of both WT in the inhibition of wax deposition was achieved, ranging in the concentration of the WT in the waxy crude (WC) oil from 5000 to 50,000 mg·L-1. Then, NanoWT was prepared by the addition of SiO2 nanoparticles on WT1 and WT2 for concentrations between 1000 and 500 mg·L-1, and the performance of the prepared NanoWT was studied at the best concentration of WIT in the absence of nanoparticles. Finally, the role of the nanofluid concentration in wax inhibition was accomplished for the best NanoWT. Selected NanoWT with nanoparticle dosage of 100 mg·L-1 added to WC oil at 5000 mg·L-1 displays reductions in WAT and WIE of 15.3 and 71.6 for NanoWT1 and -2.2 and 42.5% for NanoWT2. In flow loop experiments for the crude oil at temperatures above (30 °C) and below (16 °C), the WAT value indicates an increase of 8.3 times the pressure drops when the crude oil is flowing at a temperature below the WAT value. Therefore, when NanoWT1 is added to the crude oil, a reduction of 31.8% was found in the pressure drop in comparison with the scenario below the WAT value, ensuring the flow assurance in the pipeline in an unfavorable environment. Based on the pressure-drop method, a reduction greater than 5% in the wax deposit thickness confirms the wax deposition inhibitory character of the designed NanoWT.

15.
Nanomaterials (Basel) ; 12(18)2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-36145002

RESUMEN

This study aimed to develop novel bio-nanofluids using Solanum torvum extracts in synergy with nanoparticles of different chemical nature as a proposal sustainable for enhanced oil recovery (EOR) applications. For this, saponin-rich extracts (SRE) were obtained from Solanum torvum fruit using ultrasound-assisted and Soxhlet extraction. The results revealed that Soxhlet is more efficient for obtaining SRE from Solanum torvum and that degreasing does not generate additional yields. SRE was characterized by Fourier transformed infrared spectrophotometry, thermogravimetric analysis, hydrophilic-lipophilic balance, and critical micelle concentration analyses. Bio-nanofluids based on SiO2 (strong acid), ZrO2 (acid), Al2O3 (neutral), and MgO (basic) nanoparticles and SRE were designed to evaluate the effect of the chemical nature of the nanoparticles on the SRE performance. The results show that 100 mg L-1 MgO nanoparticles improved the interfacial tension up to 57% and the capillary number increased by two orders of magnitude using this bio-nanofluid. SRE solutions enhanced with MgO recovered about 21% more than the system in the absence of nanoparticles. The addition of MgO nanoparticles did not cause a loss of injectivity. This is the first study on the surface-active properties of Solanum torvum enhanced with nanomaterials as an environmentally friendly EOR process.

16.
Nanomaterials (Basel) ; 12(13)2022 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-35808033

RESUMEN

This study aims to develop and evaluate fracturing nanofluids from the laboratory to the field trial with the dual purpose of increasing heavy crude oil mobility and reducing formation damage caused by the remaining fracturing fluid (FF). Two fumed silica nanoparticles of different sizes, and alumina nanoparticles were modified on the surface through basic and acidic treatments. The nanoparticles were characterized by transmission electron microscopy, dynamic light scattering, zeta potential and total acidity. The rheological behavior of the linear gel and the heavy crude oil after adding different chemical nature nanoparticles were measured at two concentrations of 100 and 1000 mg/L. Also, the contact angle assessed the alteration of the rock wettability. The nanoparticle with better performance was the raw fumed silica of 7 nm at 1000 mg/L. These were employed to prepare a fracturing nanofluid from a commercial FF. Both fluids were evaluated through their rheological behavior as a function of time at high pressure following the API RP39 test, and spontaneous imbibition tests were carried out to assess the FF's capacity to modify the wettability of the porous media. It was possible to conclude that the inclusion of 7 nm commercial silica nanoparticles allowed obtaining a reduction of 10 and 20% in the two breakers used in the commercial fracture fluid formulation without altering the rheological properties of the system. Displacement tests were also performed on proppant and rock samples at reservoir conditions of overburden and pore pressures of 3200 and 1200 psi, respectively, while the temperature was set at 77 °C and the flow rate at 0.3 cm3/min. According to the effective oil permeability, a decrease of 31% in the damage was obtained. Based on these results, the fracturing nanofluid was selected and used in the first worldwide field application in a Colombian oil field with a basic sediment and water (BSW%) of 100 and without oil production. After two weeks of the hydraulic fracture operation, crude oil was produced. Finally, one year after this work, crude oil viscosity and BSW% kept showing reductions near 75% and 33%, respectively; and having passed two years, the cumulative incremental oil production is around 120,000 barrels.

17.
ACS Omega ; 7(45): 40603-40624, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36406557

RESUMEN

The increase in the global demand for energy and fossil fuel dependency is hindering efforts to reduce greenhouse gas (GHG) emissions. Geothermal resources supplement this increase in energy demand with reduced emissions because of their availability, base-load production profile, and climatic independence. Despite these advantages, the development of geothermal energy is limited because of different reasons such as subsurface exploration risk and high upfront capital cost for drilling and facility construction. However, similarities in infrastructure and operations between the oil and gas industry and the geothermal industry can optimize expense and development when exploiting geothermal resources. Thus, in this review, we present recent advances and applications of geothermal power systems in the oil and gas industry starting from the fundamentals and basic principles of geothermal energy and the organic Rankine cycle (ORC). These applications include the use of geothermal resources via abandoned wells, active wells, and paired thermal enhanced oil recovery processes with injection for fluid heating and energy production. Abandoned wells are alternatives that reduce costs in geothermal energy-use projects. The use of geothermal resources via active wells allows the valorization of a resource, such as the production of water, which is considered a byproduct of production activities in an oilfield. The use of thermally enhanced oil recovery processes enhances the energy conditions of fluids produced in the field, improving geothermal systems with fluids at higher temperatures. Finally, an overview is presented of the challenges and opportunities of geothermal energy in the oil industry where the requirement to improve the usage of technologies, such as the ORCs, with the working fluids used in the cycles, is highlighted. Furthermore, the importance of environmental studies and use of novel tools, such as nanotechnology, to improve the efficiency of geothermal energy usage is highlighted.

18.
Nanomaterials (Basel) ; 11(5)2021 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-34069187

RESUMEN

This study focuses on evaluating the volumetric hydrogen content in the gaseous mixture released from the steam catalytic gasification of n-C7 asphaltenes and resins II at low temperatures (<230 °C). For this purpose, four nanocatalysts were selected: CeO2, CeO2 functionalized with Ni-Pd, Fe-Pd, and Co-Pd. The catalytic capacity was measured by non-isothermal (from 100 to 600 °C) and isothermal (220 °C) thermogravimetric analyses. The samples show the main decomposition peak between 200 and 230 °C for bi-elemental nanocatalysts and 300 °C for the CeO2 support, leading to reductions up to 50% in comparison with the samples in the absence of nanoparticles. At 220 °C, the conversion of both fractions increases in the order CeO2 < Fe-Pd < Co-Pd < Ni-Pd. Hydrogen release was quantified for the isothermal tests. The hydrogen production agrees with each material's catalytic activity for decomposing both fractions at the evaluated conditions. CeNi1Pd1 showed the highest performance among the other three samples and led to the highest hydrogen production in the effluent gas with values of ~44 vol%. When the samples were heated at higher temperatures (i.e., 230 °C), H2 production increased up to 55 vol% during catalyzed n-C7 asphaltene and resin conversion, indicating an increase of up to 70% in comparison with the non-catalyzed systems at the same temperature conditions.

19.
ACS Omega ; 5(43): 27800-27810, 2020 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-33163763

RESUMEN

This study aims to evaluate the behavior of Cardanol/SiO2 nanocomposites in the inhibition of the asphaltene damage based on the coreflooding test at reservoir conditions. The nanocomposite design was performed in Part I (https://doi.org/10.1021/acs.energyfuels.0c01114), leading to SiO2 nanoparticles functionalized with different mass fractions of cardanol on the surface of 5 (5CSN), 7 (7CSN), and 9% (9CSN). In this part of the study, the nanocomposite/reservoir fluid interactions were evaluated through interfacial tension measurements and nanocomposite/rock surface interactions using water imbibition and contact angle measurements. Results showed that the designed nanocomposite leads to a reduction of interfacial tension of 82.6, 61.7, and 51.4% for 5CSN, 7CSN, and 9CSN regarding silica support (SN). Whereas, the reduction of the Si-OH functional groups from SiO2 nanoparticles due to the increase of the cardanol content affects the effectiveness of the wettability alteration for 7CSN and 9CSN. Nevertheless, when 5CSN is evaluated, the system is altered from an oil-wet to a mixed-wet state. Coreflooding tests at reservoir conditions were performed to evaluate the oil recovery after asphaltene damage, after damage removal and nanofluid injection, and after induction of a second asphaltene damage to check inhibition. Results show that the selected nanocomposites at a dosage of 300 mg·L-1 enhance the oil recovery in comparison with the baseline conditions via the reduction of the interfacial/surface forces at the pore scale and wettability alteration. It is worth to remark that this improvement remains after the second asphaltene damage induction, which proves the high inhibitory capacity of the designed nanocomposite for the asphaltene precipitation/deposition. Also, the use of the nanocomposites favors the oil recovery more than 50% compared to the asphaltene damage scenario.

20.
ACS Appl Mater Interfaces ; 12(11): 13510-13520, 2020 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-32092269

RESUMEN

A promising alternative to improve the ultra-gas-wet alteration process by the addition of nanoparticles was developed. This study is focused on studying the functionalization process of nanoparticles of γ-alumina (γ-Al2O3) and magnesia (MgO) using a commercial fluorocarbon surfactant (SYLNYL-FSJ), from an experimental and theoretical approach. Different fluorocarbon surfactant concentrations were used in the functionalization process of the nanoparticles, and the materials obtained were characterized by Fourier-transform infrared spectroscopy (FTIR) and dynamic light scattering (DLS). The experimental setup of the interaction between the surfactant and nanoparticles was reproduced by molecular simulations in order to obtain physical insights into the adsorption process. Experimental results show a suitable functionalization for both nanoparticles with the fluorocarbon surfactant. The γ-Al2O3 nanoparticles showed better behavior based on the obtained nonfrictional conditions, which lead the water and n-decane droplets to slide on the rock surface coated with the functionalized nanoparticles. The experimental contact angles on the functionalized γ-Al2O3 nanoparticles were reproduced by molecular dynamics simulations. From the interaction energies' evaluation, it was also determined that alumina nanoparticles could reduce the adhesive energy to 0.01 kcal mol-1, regarding magnesia nanoparticles. Also, a significant difference was obtained for the surfactant-liquid interactions between the two nanoparticles evaluated, with changes of 17% for surfactant-water interactions and 28% for the surfactant-n-decane. The obtained results explain the pronounced increase for the contact angles of n-decane on the functionalized γ-Al2O3 nanoparticles.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA