Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Plant Physiol ; 180(1): 109-123, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30755474

RESUMEN

Green macroalgae of the genus Ulva play a key role in coastal ecosystems and are of increasing commercial importance. However, physiological differences between strains and species have yet to be described in detail. Furthermore, the strains of Ulva used in aquaculture usually originate from opportunistic collection in the wild without prior selection of best performing strains. Hence, efforts are required to detect the potential variability in growth and metabolic accumulation between Ulva strains and ultimately select the best performing strains under given environmental conditions. Here, the growth, physiological, and metabolic characteristics of 49 laminar Ulva spp. strains were investigated using a custom-made high-throughput phenotyping platform, enzymatic assays, and gas chromatography-mass spectrometry. We found large natural variation for a wide range of growth and metabolic characteristics, with growth rates varying from 0.09 to 0.37 mg.mg-1d-1 among strains. Ulva spp. possess a unique diurnal growth pattern and primary metabolism compared with land plants, with higher growth rates during the night than during the light period. Starch and sucrose only contributed on average 35% of the carbon required to sustain Ulva's night growth. Nitrates accumulated during the night in Ulva tissues, and nitrate accumulation and consumption was positively correlated with growth. In addition, we identified six amino acids as possible biomarkers for high growth in Ulva The large variability in growth and metabolite accumulation recorded among morphologically similar Ulva strains justifies future efforts in strain selection for increasing biomass, metabolite yields, and nutrient removal in the growing aquaculture industry.


Asunto(s)
Ritmo Circadiano , Ulva/crecimiento & desarrollo , Acuicultura , Carbono/metabolismo , Estudio de Asociación del Genoma Completo , Nitratos/metabolismo , Fenotipo , Filogenia , Ulva/genética , Ulva/metabolismo
2.
Mar Drugs ; 12(1): 394-461, 2014 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-24447996

RESUMEN

Several Dinophysis species produce diarrhoetic toxins (okadaic acid and dinophysistoxins) and pectenotoxins, and cause gastointestinal illness, Diarrhetic Shellfish Poisoning (DSP), even at low cell densities (<103 cells·L⁻¹). They are the main threat, in terms of days of harvesting bans, to aquaculture in Northern Japan, Chile, and Europe. Toxicity and toxin profiles are very variable, more between strains than species. The distribution of DSP events mirrors that of shellfish production areas that have implemented toxin regulations, otherwise misinterpreted as bacterial or viral contamination. Field observations and laboratory experiments have shown that most of the toxins produced by Dinophysis are released into the medium, raising questions about the ecological role of extracelular toxins and their potential uptake by shellfish. Shellfish contamination results from a complex balance between food selection, adsorption, species-specific enzymatic transformations, and allometric processes. Highest risk areas are those combining Dinophysis strains with high cell content of okadaates, aquaculture with predominance of mytilids (good accumulators of toxins), and consumers who frequently include mussels in their diet. Regions including pectenotoxins in their regulated phycotoxins will suffer from much longer harvesting bans and from disloyal competition with production areas where these toxins have been deregulated.


Asunto(s)
Dinoflagelados/metabolismo , Toxinas Marinas/metabolismo , Mariscos/análisis , Animales , Dinoflagelados/química , Humanos , Biología Marina , Toxinas Marinas/análisis , Toxinas Marinas/biosíntesis , Toxinas Marinas/toxicidad , Océanos y Mares , Población , Agua de Mar/análisis , Especificidad de la Especie
3.
Environ Sci Technol ; 47(8): 3788-95, 2013 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-23480590

RESUMEN

We report the development and validation of a qPCR based method for estimation of the toxic benthic dinoflagellate Ostreopsis cf. ovata in the complex matrix of marine aerosol at Sant Andreu de Llavaneres beach (northwestern Mediterranean Sea). Toxic events in humans after inhalation or cutaneous contact have been reported during O. cf. ovata blooms and were attributed to palytoxin (PLTX)-like compounds produced by this microalga. Similar PCR efficiencies of plasmid and cellular environmental standard curves (98 and 100%, respectively) allowed obtaining the rDNA copy number per cell. The analytical sensitivity was set at 2 × 10(0) rDNA copy number and 8 × 10(-4) cell per reaction. Based on spiking experiments, we evaluated the aerosol filter inhibitory activity and recovery rate of cells from filters, then normalized the abundance data of toxic O. cf. ovata. The abundance in marine aerosol during the bloom varied in the range of 1-102 cells per filter. Analytical determinations were also applied to detect palytoxin in field samples. No palytoxin was detected in the aerosol filters, and the estimation of PLTX like-compound concentrations in microepiphytic assemblages varied between 0.1 and 1.2 pg/cell.


Asunto(s)
Aerosoles/análisis , Dinoflagelados/genética , Dinoflagelados/aislamiento & purificación , Toxinas Marinas/genética , Toxinas Marinas/aislamiento & purificación , Reacción en Cadena de la Polimerasa/métodos , Agua de Mar/química , ADN/genética , ADN/aislamiento & purificación , Dosificación de Gen/genética , Estándares de Referencia , Reproducibilidad de los Resultados , España
4.
Mar Drugs ; 11(10): 3823-45, 2013 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-24152559

RESUMEN

From June 2006 to January 2007 passive samplers (solid phase adsorbing toxin tracking, SPATT) were tested as a monitoring tool with weekly monitoring of phytoplankton and toxin content (liquid chromatography-mass spectrometry, LC-MS) in picked cells of Dinophysis and plankton concentrates. Successive blooms of Dinophysis acuminata, D. acuta and D. caudata in 2006 caused a long mussel harvesting closure (4.5 months) in the Galician Rías (NW Spain) and a record (up to 9246 ng·g resin-week-1) accumulation of toxins in SPATT discs. Best fit of a toxin accumulation model was between toxin accumulation in SPATT and the product of cell densities by a constant value, for each species of Dinophysis, of toxin content (average) in picked cells. Detection of Dinophysis populations provided earlier warning of oncoming diarrhetic shellfish poisoning (DSP) outbreaks than the SPATT, which at times overestimated the expected toxin levels in shellfish because: (i) SPATT accumulated toxins did not include biotransformation and depuration loss terms and (ii) accumulation of toxins not available to mussels continued for weeks after Dinophysis cells were undetectable and mussels were toxin-free. SPATT may be a valuable environmental monitoring and research tool for toxin dynamics, in particular in areas with no aquaculture, but does not provide a practical gain for early warning of DSP outbreaks.


Asunto(s)
Bivalvos/química , Contaminación de Alimentos/análisis , Toxinas Marinas/química , Fitoplancton/química , Intoxicación por Mariscos/diagnóstico , Mariscos/análisis , Animales , Monitoreo del Ambiente/métodos , Agua de Mar/química
5.
Molecules ; 18(6): 6532-49, 2013 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-23736789

RESUMEN

The main objective of this work was the incorporation of reactive isocyanate groups into chitin and chitosan in order to effectively use the products as reactive thickening agents in castor oil. The resulting gel-like dispersions could be potentially used as biodegradable lubricating greases. Three different NCO-functionalized polymers were obtained: two of them by promoting the reaction of chitosan with 1,6-hexamethylene diisocyanate (HMDI), and the other by using chitin instead of chitosan. These polymers were characterized through 1H-NMR, FTIR and thermogravimetric analysis (TGA). Thermal and rheological behaviours of the oleogels prepared by dispersing these polymers in castor oil were studied by means of TGA and small-amplitude oscillatory shear (SAOS) measurements. The evolution and values of the linear viscoelasticity functions with frequency for -NCO-functionalized chitosan- and chitin-based oleogels are quite similar to those found for standard lubricating greases. In relation to long-term stability of these oleogels, no phase separation was observed and the values of viscoelastic functions increase significantly during the first seven days of ageing, and then remain almost constant. TGA analysis showed that the degradation temperature of the resulting oleogels is higher than that found for traditional lubricating greases.


Asunto(s)
Aceite de Ricino/química , Quitina/química , Quitosano/química , Isocianatos/química , Quitina/síntesis química , Quitosano/síntesis química , Resonancia Magnética Nuclear Biomolecular , Espectroscopía Infrarroja por Transformada de Fourier , Termogravimetría
6.
Nanomaterials (Basel) ; 13(21)2023 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-37947697

RESUMEN

The tribological performance of novel bio-based lubricating greases thickened with electrospun lignin nanostructures was investigated in a nanotribometer using a steel-steel ball-on-disc configuration. The impact of electrospun nanofibrous network morphology on friction and wear is explored in this work. Different lignin nanostructures were obtained with electrospinning using ethylcellulose or PVP as co-spinning polymers and subsequently used as thickeners in castor oil at concentrations of 10-30% wt. Friction and wear generally increased with thickener concentration. However, friction and wear decreased when using homogeneous bead-free nanofiber mats (with higher fiber diameter and lower porosity) rather than nanostructures dominated by the presence of particles or beaded fibers, which was favored by reducing the lignin:co-spinning polymer ratio.

7.
Int J Biol Macromol ; 242(Pt 3): 124941, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37210063

RESUMEN

Acetylated Kraft lignins were evaluated for their ability of structuring vegetable oils into oleogels. Microwave-assisted acetylation was used to adjust lignin's degree of substitution according to reaction temperature (130 to 160 °C), and its effect in improving the viscoelasticity of the oleogels, which was related to the hydroxyl group content. The results were compared with those obtained by Kraft lignins acetylated using conventional methods at room temperature. A higher microwave temperature resulted in gel-like oil dispersions with improved viscoelastic properties, and stronger shear-thinning character, along with enhanced long-term stability. Lignin nanoparticles structured castor oil by enhancing hydrogen bonding between the hydroxyl groups of the oil and the nanoparticles. The oil structuring capacity of the modified lignins enhanced the stability of water-in-oil Pickering emulsions that resulted from low-energy mixing.


Asunto(s)
Lignina , Compuestos Orgánicos , Emulsiones , Agua
8.
Food Sci Nutr ; 11(11): 6907-6919, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37970390

RESUMEN

Applying hydrocolloids in the structure of protein emulsion gel can improve its properties. Interaction of whey protein concentrate (WPC) (5%) with xanthan gum (XG) and basil seed gum (BSG) at different concentrations (0.2%, 0.4%, and 0.6%) was investigated to improve mechanical and structural properties of emulsion gel. Results illustrated that gums created a stronger structure around the oil droplets, which confocal images approved it. Also, the particle size decreased and uniformed by cooperating 0.6% gum in comparison with WPC (46.87 µm). The lowest and highest hardness values were observed in emulsion gel formed by WPC (1.27 N) and 0.6BSG: WPC (3.03 N), respectively. Also, the increase of gum concentration had a positive on consistency parameter of texture, so the value was 11.48 N s in WPC emulsion gel and it reached 0.6BSG: WPC (25.71 N s) and 0.6XG: WPC (19.96 N s). Evaluating the stability of the treatments by centrifugation indicated that 0.6BSG: WPC (89.10%) and 0.6XG: WPC (74%) had the highest level of stability. Increasing gum concentration increased the consistency and viscosity. Also, the viscoelastic properties of emulsion gel improved by 0.6% BSG. The elastic modulus of the WPC, 0.6XG: WPC, and 0.6BSG: WPC emulsion gels at the same frequency (1 Hz) was 240.90, 894.59, and 1185.61 Pa, respectively. In general, the interaction of WPC solution with hydrocolloids, especially BSG, is suggested to prepare more stable and elastic emulsion gels.

9.
Sci Total Environ ; 863: 161001, 2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36539096

RESUMEN

Biodiversity loss and degradation of natural habitats is increasing at an unprecedented rate. Of all marine habitats, biogenic reefs created by once-widespread shellfish, are now one of the most imperilled, and globally scarce. Conservation managers seek to protect and restore these habitats, but suitable baselines and indicators are required, and detailed scientific accounts are rare and inconsistent. In the present study the biodiversity of a model subtidal habitat, formed by the keystone horse mussel Modiolus modiolus (L.), was analysed across its Northeast Atlantic biogeographical range. Consistent samples of 'clumped' mussels were collected at 16 locations, covering a wide range of environmental conditions. Analysis of the associated macroscopic biota showed high biodiversity across all sites, cumulatively hosting 924 marine macroinvertebrate and algal taxa. There was a rapid increase in macroinvertebrate biodiversity (H') and community evenness (J) between 2 and 10 mussels per clump, reaching an asymptote at mussel densities of 10 per clump. Diversity declined at more northern latitudes, with depth and in coarser substrata with the fastest tidal flows. Diversity metrics corrected for species abundance were generally high across the habitats sampled, with significant latitudinal variability caused by current, depth and substrate type. Faunal community composition varied significantly between most sites and was difficult to assign to a 'typical' M. modiolus assemblage, being significantly influenced by regional environmental conditions, including the presence of algal turfs. Within the context of the rapid global increase in protection and restoration of bivalve shellfish habitats, site and density-specific values of diversity are probably the best targets for conservation management and upon which to base monitoring programmes.


Asunto(s)
Ecosistema , Mytilidae , Animales , Biodiversidad , Mariscos , Alimentos Marinos , Plantas
10.
Polymers (Basel) ; 14(5)2022 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-35267704

RESUMEN

The present review is devoted to the description of the state-of-the-art techniques and procedures concerning treatments and modifications of lignocellulosic materials in order to use them as precursors for biomaterials, biochemicals and biofuels, with particular focus on lignin and lignin-based products. Four different main pretreatment types are outlined, i.e., thermal, mechanical, chemical and biological, with special emphasis on the biological action of fungi and bacteria. Therefore, by selecting a determined type of fungi or bacteria, some of the fractions may remain unaltered, while others may be decomposed. In this sense, the possibilities to obtain different final products are massive, depending on the type of microorganism and the biomass selected. Biofuels, biochemicals and biomaterials derived from lignocellulose are extensively described, covering those obtained from the lignocellulose as a whole, but also from the main biopolymers that comprise its structure, i.e., cellulose, hemicellulose and lignin. In addition, special attention has been paid to the formulation of bio-polyurethanes from lignocellulosic materials, focusing more specifically on their applications in the lubricant, adhesive and cushioning material fields. High-performance alternatives to petroleum-derived products have been reported, such as adhesives that substantially exceed the adhesion performance of those commercially available in different surfaces, lubricating greases with tribological behaviour superior to those in lithium and calcium soap and elastomers with excellent static and dynamic performance.

11.
Adv Food Nutr Res ; 100: 173-210, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35659352

RESUMEN

The main advantage of both 3D printing (3DP) and 3D food printing (3DFP) over other technologies is the enormous capacity of both techniques for customization. Its use makes it possible to obtain products without planning and implementing a complex and costly manufacturing process. This makes 3DFP a technology of choice for the preparation of food products that meet specific needs, such as controlled nutritional or rheological properties. However, further technological developments are still needed before 3DFP can be considered fully useful for innovative and demanding applications. If both preparation and post-processing of materials based on 3D printing are optimized, aiming to reduce production time and/or complication for non-expert users, this would open a whole new range of possibilities. It is in this sense that the development of advanced 3DFP systems becomes a must. This chapter reviews current advances in extrusion-based 3D food printing systems, with in situ gelation and mixing as key aspects to better exploit the potential of 3DFP. On one hand, 3DFP systems based on in situ gelation (G3DFP) provide greater control over the final properties of the printed products, as the selection of adequate printing parameters gives the possibility of influencing the gelation process. On the other hand, mixing is indispensable for true 3DFP automation, so that the formulations do not have to be prepared by the user. Different innovative 3DFP systems based on gelling and/or mixing are presented in this chapter. Finally, the status and future of extrusion-based 3DFP, and its application in the production of customized foods for specific needs, are also overviewed.


Asunto(s)
Alimentos , Impresión Tridimensional , Reología
12.
Int J Biol Macromol ; 195: 412-423, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34871659

RESUMEN

Lignin-enriched waste products from bioethanol production of agriculture residues were tested as structuring agents in castor oil once functionalized with hexamethylene diisocyanate. Cane bagasse, barley and wheat straw were processed through steam explosion, pre-saccharification and simultaneous saccharification and fermentation (PSSF). Alternatively, cane bagasse was submitted to steam explosion and enzymatic hydrolysis (EH). Several Nuclear Magnetic Resonance techniques were used to characterize both residues and NCO-functionalized counterparts. The ß-O-4'/resinol/phenylcoumaran content and hydroxyphenyl/guaiacyl/syringyl distribution depend on biomass source, pretreatment, and enzymatic hydrolysis. Total hydroxyl content (from 1.23 for cane bagasse to 1.85 for wheat straw residues), aromatic/aliphatic hydroxyl ratio (0.78 for cane bagasse and 0.61 and 0.49 for barley and wheat straw residues, respectively) and S/G ratio (ranging from 0.25 to 0.86) influence the NCO-functionalization and oleogel rheological response. Oleogels obtained with barley straw residues exhibited the highest values of the storage modulus; around 2 × 105 Pa and 104 Pa for 25% and 20% contents, respectively. PSSF process showed weaker modification, leading to softer viscoelastic response compared to EH. These oleogels exhibited rheological properties similar to lubricating greases of different NLGI grades. Therefore, we herein show an integrative protocol for the valorization of lignin-enriched residues from bioethanol production as potential thickeners of lubricating greases.


Asunto(s)
Etanol/metabolismo , Lignina/química , Biomasa , Celulosa/química , Etanol/química , Fermentación/fisiología , Hordeum/química , Hidrólisis , Isocianatos/química , Lubricantes/síntesis química , Compuestos Orgánicos/química , Vapor , Triticum/química
13.
Polymers (Basel) ; 14(21)2022 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-36365734

RESUMEN

This study reports on a novel strategy for manufacturing thickened gel-like castor oil formulations by dispersing electrospun lignin/ethylcellulose nanostructures. These thickened formulations were rheologically and tribologically evaluated with the aim of being proposed as alternative ecofriendly lubricating greases. Low-sulfonate kraft lignin (LSL) and ethylcellulose (EC) were dissolved in a DMAc:THF mixture at different concentrations (8, 10, and 15 wt.%) and LSL:EC ratios (50:50, 70:30, and 90:10) and subjected to electrospinning. The resulting electrospun nanostructures were morphologically characterized. EC acting as the cospinning polymer improved both LSL spinnability and the oil structuring ability. Solutions with a high lignin content achieved microsized particles connected by fibrils, whereas solutions with a high EC content (50:50 ratio) and LSL/EC total concentration (10 and 15 wt.%) yielded beaded or bead-free nanofibers, due to enhanced extensional viscoelastic properties and nonNewtonian characteristics. The gel-like properties of electrospun nanostructure dispersions in castor oil were strengthened with the nanostructure concentration and the EC:LSL ratio, as a result of the formation of a more interconnected fiber network. The oleodispersions studied exhibited a satisfactory frictional response in a tribological contact, with friction coefficient values that were comparable to those achieved with traditional lithium-lubricating greases.

14.
Int J Biol Macromol ; 180: 212-221, 2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-33737178

RESUMEN

This work explores the electrospinnability of low-sulfonate Kraft lignin (LSL)/polyvinylpyrrolidone (PVP) solutions in N,N-dimethylformamide (DMF) and the ability of the different micro- and nano-architectures generated to structure castor oil. LSL/PVP solutions were prepared at different concentrations (8-15 wt%) and LSL:PVP ratios (90:10-0:100) and physico-chemically and rheologically characterized. The morphology of electrospun nanostructures mainly depends on the rheological properties of the solution. Electrosprayed nanoparticles or micro-sized particles connected by thin filaments were obtained from solutions with low LSL/PVP concentrations and/or high LSL:PVP ratios, whereas beaded or bead-free nanofibers were produced by increasing concentration and/or decreasing LSL:PVP ratio, due to enhanced extensional viscoelastic properties and non-Newtonian characteristics. Electrospun LSL/PVP nanofibers are able to form oleogels by simply dispersing them into castor oil at concentrations between 10 and 30 wt%. The rheological properties of the oleogels may be tailored by modifying the LSL:PVP ratio and nanofibers content. The potential application of these oleogels as bio-based lubricants was also explored in a tribological cell. Satisfactory friction and wear results are achieved when using oleogels structured by nanofibers mats with enhanced gel-like properties as lubricants. Overall, electrospinning of lignin/PVP solutions can be proposed as a simple and effective method to produce nanofibers for oil structuring.


Asunto(s)
Aceite de Ricino/química , Lignina/química , Nanofibras/química , Povidona/química , Dimetilformamida/química , Elasticidad , Lubricantes/química , Estructura Molecular , Compuestos Orgánicos/química , Tamaño de la Partícula , Reología , Soluciones , Viscosidad
15.
Polymers (Basel) ; 13(13)2021 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-34279350

RESUMEN

The present work focuses on the development of lignin micro- and nano-structures obtained by means of electrohydrodynamic techniques aimed to be potentially applicable as thickening or structuring agents in vegetable oils. The micro- and nano-structures used were mainly composed of eucalyptus kraft lignin (EKL), which were doped to some extent with polyvinylpyrrolidone (PVP). EKL/PVP solutions were prepared at different concentrations (10-40 wt.%) and EKL:PVP ratios (95:5-100:0) in N, N-dimethylformamide (DMF) and further physico-chemically and rheologically characterized. Electrosprayed micro-sized particles were obtained from solutions with low EKL/PVP concentrations (10 and 20 wt.%) and/or high EKL:PVP ratios, whereas beaded nanofiber mats were produced by increasing the solution concentration and/or decreasing EKL:PVP ratio, as a consequence of improved extensional viscoelastic properties. EKL/PVP electrospun nanofibers were able to form oleogels by simply dispersing them into castor oil at nanofiber concentrations higher than 15 wt.%. The rheological properties of these oleogels were assessed by means of small-amplitude oscillatory shear (SAOS) and viscous flow tests. The values of SAOS functions and viscosity depended on both the nanofiber concentration and the morphology of nanofiber templates and resemble those exhibited by commercial lubricating greases made from traditional metallic soaps and mineral oils.

16.
Macromolecules ; 54(8): 3769-3779, 2021 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-34054144

RESUMEN

Due to their unique structural and mechanical properties, randomly cross-linked polymer networks play an important role in many different fields, ranging from cellular biology to industrial processes. In order to elucidate how these properties are controlled by the physical details of the network (e.g., chain-length and end-to-end distributions), we generate disordered phantom networks with different cross-linker concentrations C and initial densities ρinit and evaluate their elastic properties. We find that the shear modulus computed at the same strand concentration for networks with the same C, which determines the number of chains and the chain-length distribution, depends strongly on the preparation protocol of the network, here controlled by ρinit. We rationalize this dependence by employing a generic stress-strain relation for polymer networks that does not rely on the specific form of the polymer end-to-end distance distribution. We find that the shear modulus of the networks is a nonmonotonic function of the density of elastically active strands, and that this behavior has a purely entropic origin. Our results show that if short chains are abundant, as it is always the case for randomly cross-linked polymer networks, the knowledge of the exact chain conformation distribution is essential for correctly predicting the elastic properties. Finally, we apply our theoretical approach to literature experimental data, qualitatively confirming our interpretations.

17.
Cell Rep ; 35(11): 109263, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-34133931

RESUMEN

The interplay between the phytohormone abscisic acid (ABA) and the gasotransmitter nitric oxide (NO) regulates seed germination and post-germinative seedling growth. We show that GAP1 (germination in ABA and cPTIO 1) encodes the transcription factor ANAC089 with a critical membrane-bound domain and extranuclear localization. ANAC089 mutants lacking the membrane-tethered domain display insensitivity to ABA, salt, and osmotic and cold stresses, revealing a repressor function. Whole-genome transcriptional profiling and DNA-binding specificity reveals that ANAC089 regulates ABA- and redox-related genes. ANAC089 truncated mutants exhibit higher NO and lower ROS and ABA endogenous levels, alongside an altered thiol and disulfide homeostasis. Consistently, translocation of ANAC089 to the nucleus is directed by changes in cellular redox status after treatments with NO scavengers and redox-related compounds. Our results reveal ANAC089 to be a master regulator modulating redox homeostasis and NO levels, able to repress ABA synthesis and signaling during Arabidopsis seed germination and abiotic stress.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Retroalimentación Fisiológica , Germinación , Semillas , Transducción de Señal , Estrés Fisiológico , Ácido Abscísico/metabolismo , Arabidopsis/genética , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Secuencia de Bases , Sitios de Unión , Disulfuros/metabolismo , ADN de Plantas/metabolismo , Regulación hacia Abajo/genética , Mutación con Ganancia de Función/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Germinación/genética , Óxido Nítrico/metabolismo , Oxidación-Reducción , Unión Proteica , Semillas/genética , Semillas/crecimiento & desarrollo , Fracciones Subcelulares/metabolismo , Compuestos de Sulfhidrilo/metabolismo , Transcriptoma/genética , Regulación hacia Arriba/genética
18.
Adv Food Nutr Res ; 93: 1-58, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32711860

RESUMEN

Freeze-drying, a drying unit operation frequently used in food, pharmaceutical, and biopharmaceutical industries to prolong the shelf life of labile products, is an energy-intensive, time-consuming, and expensive process. Although all three steps (freezing, primary drying, and secondary drying) of freeze-drying are important, primary drying is the longest and most critical one. As sublimation during primary drying is mainly described in terms of heat and mass transfer, the present work provides extensive theoretical and experimental analyses of these processes. First, a detailed review of the current state-of-the art of freeze-drying, focusing on the drying stage, is given, which contributes to a fundamental understanding of the drying process. Second, a detailed experimental study of the drying section of the freeze-drying process is discussed, furnishing information on the relationship between input and output process parameters during the primary drying stage and thus aiding freeze-drying process design and optimization. In this regard, the influence of primary drying input parameters (i.e., shelf temperature and chamber pressure) and vial position on output parameters such as product temperature, sublimation rate, overall vial heat transfer coefficient, and resistance to mass transfer of the dried product are extensively discussed. For all combinations of shelf temperature and chamber pressure studied herein, the highest product temperature, sublimation rate, and overall vial heat transfer coefficient are observed in front edge vials, whereas the lowest values are observed in center vials. In general, the highest sublimation rate, at a given product temperature, is observed for low chamber pressure-high shelf temperature combinations.


Asunto(s)
Desecación , Tecnología de Alimentos , Alimentos , Liofilización , Preparaciones Farmacéuticas , Tecnología Farmacéutica , Productos Biológicos , Estabilidad de Medicamentos , Almacenaje de Medicamentos , Conservación de Alimentos , Almacenamiento de Alimentos , Humanos
19.
Int J Pharm ; 578: 119116, 2020 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-32027958

RESUMEN

Freeze-drying, until now, has been a process that was designed using a trial and error experimental approach. This approach is often material and time consuming, and the resulting freeze-drying processes are neither optimum nor robust. Accordingly, the objective of this study was to develop a simple-to-use and experimental-based approach to design an optimum and robust freeze-drying process for any given formulation. The temperature ramp approach (TRA) detailed in this study involves the implementation of a customized design of experiments (DoE) to perform few (three or four) experiments using a given drug formulation. The DoE results are analyzed to define optimum processing conditions (i.e., shelf temperature and chamber pressure) based on a predefined range of target product temperature for primary drying, which could be defined from formulation characterization at its frozen state. In this study, a successful freeze-drying process of two model formulations using the TRA was designed. Verification experiments at the optimum processing conditions showed excellent agreement in both product temperature and sublimation rate with the values obtained using the TRA. Thus, the TRA detailed in this study offers a significant advantage to reduce development time and material, and enhance the efficiency and robustness of the resulting freeze-drying process.


Asunto(s)
Química Farmacéutica/métodos , Liofilización/métodos , Desecación/métodos , Composición de Medicamentos/métodos , Congelación , Temperatura
20.
J Pharm Sci ; 109(1): 785-796, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31288035

RESUMEN

The application of quality by design (QbD) is becoming an integral part of the formulation and process development for pharmaceutical products. An essential feature of the QbD philosophy is the design space. In this sense, a new approach to construct a process design space (PDS) for the primary drying section of a freeze-drying process is addressed in this paper. An effective customized design of experiments (DoE) is developed for freeze-drying experiments. The results obtained from the DoE are then used to construct the product-based PDS. The proposed product-based PDS construction approach has several advantages, including (1) eliminating assumptions on the heat transfer coefficient and dried product resistance, as it is constructed from experimental results specifically obtained from a given formulation, yielding more realistic and reliable results and (2) PDS construction based on a narrow range of product temperatures and considering the variations in product temperature and sublimation rate of vials across a shelf. This guarantees the effectiveness and robustness of the process and facilitates the process scale-up and transfer. The PDS developed herein was experimentally verified. The PDS predicted parameters were in excellent agreement with the experimentally obtained parameters.


Asunto(s)
Modelos Químicos , Sacarosa/química , Tecnología Farmacéutica , Trehalosa/química , Composición de Medicamentos , Liofilización , Presión , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA