Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Gastroenterology ; 155(6): 1951-1966.e26, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30165047

RESUMEN

BACKGROUND & AIMS: We performed an integrated analysis to identify microRNAs (miRNAs) and messenger RNAs (mRNAs) with altered expression in liver tumors from 3 mouse models of hepatocellular carcinoma (HCC) and human tumor tissues. METHODS: We analyzed miRNA and mRNA expression profiles of liver tissues from mice with diethylnitrosamine-induced hepatocarcinogenesis, conditional expression of lymphotoxin alpha and lymphotoxin beta, or inducible expression of a Myc transgene (Tet-O-Myc mice), as well as male C57BL/6 mice (controls). miRNA mimics were expressed and miRNAs and mRNAs were knocked down in human (Huh7, Hep3B, JHH2) hepatoma cell lines; cells were analyzed for viability, proliferation, apoptosis, migration, and invasion. Cells were grown as xenograft tumors in nude mice and analyzed. We combined in silico target gene prediction with mRNA profiles from all 3 mouse models. We quantified miRNA levels in 146 fresh-frozen tissues from patients (125 HCCs, 17 matched nontumor tissues, and 4 liver samples from patients without cancer) and published human data sets and tested correlations with patient survival times using Kaplan-Meier curves and the log-rank test. Levels of NUSAP1 mRNA were quantified in 237 HCCs and 5 nontumor liver samples using the TaqMan assay. RESULTS: Levels of the miRNA 193a-5p (MIR193A-5p) were reduced in liver tumors from all 3 mouse tumor models and in human HCC samples, compared with nontumor liver tissues. Expression of a MIR193A-5p mimic in hepatoma cells reduced proliferation, survival, migration, and invasion and their growth as xenograft tumors in nude mice. We found nucleolar and spindle-associated protein 1 (NUSAP1) to be a target of MIR193A-5p; HCC cells and tissues with low levels of MIR193A-5p had increased expression of NUSAP1. Increased levels of NUSAP1 in HCC samples correlated with shorter survival times of patients. Knockdown of NUSAP1 in Huh7 cells reduced proliferation, survival, migration, and growth as xenograft tumors in nude mice. Hydrodynamic tail-vein injections of a small hairpin RNA against NUSAP1 reduced growth of Akt1-Myc-induced tumors in mice. CONCLUSIONS: MIR193A-5p appears to prevent liver tumorigenesis by reducing levels of NUSAP1. Levels of MIR193A-5p are reduced in mouse and human HCC cells and tissues, leading to increased levels of NUSAP1, associated with shorter survival times of patients. Integrated analyses of miRNAs and mRNAs in tumors from mouse models can lead to identification of therapeutic targets in humans. The currently reported miRNA and mRNA profiling data have been submitted to the Gene Expression Omnibus (super-series accession number GSE102418).


Asunto(s)
Apoptosis , Carcinogénesis/genética , Proteínas de Ciclo Celular/metabolismo , Neoplasias Hepáticas/prevención & control , MicroARNs/metabolismo , Proteínas Nucleares/metabolismo , Animales , Apoptosis/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/prevención & control , Línea Celular Tumoral , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Humanos , Hígado/metabolismo , Neoplasias Hepáticas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Desnudos , Proteínas Asociadas a Microtúbulos/metabolismo , ARN Mensajero/metabolismo , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Nat Protoc ; 14(6): 1884-1925, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31110298

RESUMEN

Pediatric liver transplantation is often required as a consequence of biliary disorders because of the lack of alternative treatments for repairing or replacing damaged bile ducts. To address the lack of availability of pediatric livers suitable for transplantation, we developed a protocol for generating bioengineered biliary tissue suitable for biliary reconstruction. Our platform allows the derivation of cholangiocyte organoids (COs) expressing key biliary markers and retaining functions of primary extra- or intrahepatic duct cholangiocytes within 2 weeks of isolation. COs are subsequently seeded on polyglycolic acid (PGA) scaffolds or densified collagen constructs for 4 weeks to generate bioengineered tissue retaining biliary characteristics. Expertise in organoid culture and tissue engineering is desirable for optimal results. COs correspond to mature functional cholangiocytes, differentiating our method from alternative organoid systems currently available that propagate adult stem cells. Consequently, COs provide a unique platform for studies in biliary physiology and pathophysiology, and the resulting bioengineered tissue has broad applications for regenerative medicine and cholangiopathies.


Asunto(s)
Conductos Biliares/citología , Conductos Biliares/fisiología , Organoides/citología , Organoides/fisiología , Regeneración , Ingeniería de Tejidos/métodos , Animales , Materiales Biocompatibles/química , Separación Celular/métodos , Células Cultivadas , Diseño de Equipo , Humanos , Ratones , Ingeniería de Tejidos/instrumentación , Andamios del Tejido/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA