RESUMEN
Petrochemical-based plastics have not only contaminated all parts of the globe, but are also causing potentially irreversible damage to our ecosystem because of their non-biodegradability. As bioplastics are limited in number, there is an urgent need to design and develop more biodegradable alternatives to mitigate the plastic menace. In this regard, we report aquaplastic, a new class of microbial biofilm-based biodegradable bioplastic that is water-processable, robust, templatable and coatable. Here, Escherichia coli was genetically engineered to produce protein-based hydrogels, which are cast and dried under ambient conditions to produce aquaplastic, which can withstand strong acid/base and organic solvents. In addition, aquaplastic can be healed and welded to form three-dimensional architectures using water. The combination of straightforward microbial fabrication, water processability and biodegradability makes aquaplastic a unique material worthy of further exploration for packaging and coating applications.
Asunto(s)
Biopelículas , Plásticos/química , Agua/química , Biodegradación Ambiental , Bioingeniería , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas/química , Solventes , Resistencia a la TracciónRESUMEN
Carbon nanotubes (CNTs) have unique physical and chemical properties that drive their use in a variety of commercial and industrial applications. CNTs are commonly oxidized prior to their use to enhance dispersion in polar solvents by deliberately grafting oxygen-containing functional groups onto CNT surfaces. In addition, CNT surface oxides can be unintentionally formed or modified after CNTs are released into the environment through exposure to reactive oxygen species and/or ultraviolet irradiation. Consequently, it is important to understand the impact of CNT surface oxidation on the environmental fate, transport, and toxicity of CNTs. In this review, we describe the specific role of oxygen-containing functional groups on the important environmental behaviors of CNTs in aqueous media (e.g., colloidal stability, adsorption, and photochemistry) as well as their biological impact. We place special emphasis on the value of systematically varying and quantifying surface oxides as a route to identifying quantitative structure-property relationships. The role of oxygen-containing functional groups in regulating the efficacy of CNT-enabled water treatment technologies and the influence of surface oxides on other carbon-based nanomaterials are also evaluated and discussed.
Asunto(s)
Nanotubos de Carbono/química , Oxígeno/metabolismo , Contaminantes Químicos del Agua/metabolismo , Adsorción , Humanos , Óxidos/química , Óxidos/metabolismo , Oxígeno/química , Propiedades de Superficie , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/farmacologíaRESUMEN
Nanocellulose has attracted widespread interest for applications in materials science and biomedical engineering due to its natural abundance, desirable physicochemical properties, and high intrinsic mineralizability (i.e., complete biodegradability). A common strategy to increase dispersibility in polymer matrices is to modify the hydroxyl groups on nanocellulose through covalent functionalization, but such modification strategies may affect the desirable biodegradation properties exhibited by pristine nanocellulose. In this study, cellulose nanofibrils (CNFs) functionalized with a range of esters, carboxylic acids, or ethers exhibited decreased rates and extents of mineralization by anaerobic and aerobic microbial communities compared to unmodified CNFs, with etherified CNFs exhibiting the highest level of recalcitrance. The decreased biodegradability of functionalized CNFs depended primarily on the degree of substitution at the surface of the material rather than within the bulk. This dependence on surface chemistry was attributed not only to the large surface area-to-volume ratio of nanocellulose but also to the prerequisite surface interaction by microorganisms necessary to achieve biodegradation. Results from this study highlight the need to quantify the type and coverage of surface substituents in order to anticipate their effects on the environmental persistence of functionalized nanocellulose.
Asunto(s)
Celulosa , Polímeros , Ácidos Carboxílicos , HidrogelesRESUMEN
The unique physicochemical and luminescent properties of carbon dots (CDs) have motivated research efforts toward their incorporation into commercial products. Increased use of CDs will inevitably lead to their release into the environment where their fate and persistence will be influenced by photochemical transformations, the nature of which is poorly understood. This knowledge gap motivated the present investigation of the effects of direct and indirect photolysis on citric and malic acid-based CDs. Our results indicate that natural sunlight will rapidly and non-destructively photobleach CDs into optically inactive carbon nanoparticles. We demonstrate that after photobleaching, â¢OH exposure degrades CDs in a two-step process that will span several decades in natural waters. The first step, occurring over several years of â¢OH exposure, involves depolymerization of the CD structure, characterized by volatilization of over 60% of nascent carbon atoms and the oxidation of nitrogen atoms into nitro groups. This is followed by a slower oxidation of residual carbon atoms first into carboxylic acids and then volatile carbon species, while nitrogen atoms are oxidized into nitrate ions. Considered alongside related CD studies, our findings suggest that the environmental behavior of CDs will be strongly influenced by the molecular precursors used in their synthesis.
Asunto(s)
Carbono , Puntos Cuánticos , Luminiscencia , Nitrógeno , Luz Solar , AguaRESUMEN
The biodegradation rates of carbon nanotube (CNT)/ polymer nanocomposites (PNCs) containing poly-ε-caprolactone (PCL) were investigated using Pseudomonas aeruginosa, a microorganism commonly found in the environment. CNT/PCL nanocomposite mass loss profiles revealed that the rate of PCL matrix biodegradation decreased systematically as the CNT loading increased from 0.1 to 10% w/w. Addition of even a low CNT loading (<1% w/w) caused the CNT/PCL biodegradation rate constant to decrease by more than 50%. Similar trends in biodegradation rate were observed for both pristine and oxidized multiwall CNTs embedded in PCL. During PCL matrix biodegradation, CNT accumulation was observed at the surface of CNT/PCL nanocomposites and single particle inductively coupled-mass spectrometry experiments revealed no measurable CNT release to the culture fluid. Experimental data indicated that biodegradation proceeded as a result of biofilm formation on the CNT/PCL nanocomposites and decreased as a function of CNT loading due to the cytotoxicity of CNTs toward P. aeruginosa and the physical barrier presented by the surface-accumulated CNTs to the underlying PCL substrate. As the CNT loading in the CNT/PCL nanocomposites increased, the microbial proliferation of planktonic cells in the surrounding media also decreased as did the biodegradation rate of PCL samples present in the same reactors. Results from this study demonstrate that the inclusion of CNTs into polymer matrices could increase the environmental persistence of polymers in lakes, landfills, and surface waters.
Asunto(s)
Nanocompuestos , Nanotubos de Carbono , Biodegradación Ambiental , Polímeros , Pseudomonas aeruginosaRESUMEN
The interaction of anaerobic microorganisms with carbon nanotube/polymer nanocomposites (CNT/PNC) will play a major role in determining their persistence and environmental fate at the end of consumer use when these nano-enabled materials enter landfills and encounter wastewater. Motivated by the need to understand how different parameters (i.e., polymer type, microbial phenotype, CNT characteristics) influence CNT/PNC biodegradation rates, we have used volumetric biogas measurements and kinetic modeling to study biodegradation as a function of polymer type and CNT properties. In one set of experiments, oxidized multiwall carbon nanotubes (O-MWCNTs) with a range of CNT loadings 0-5% w/w were incorporated into poly-ε-caprolactone (PCL) and polyhydroxyalkanoates (PHA) matrices and subjected to biodegradation by an anaerobic microbial community. For each CNT/PNC, complete polymer biodegradation was ultimately observed, although the rate of biodegradation was inhibited above certain critical CNT loadings dependent upon the polymer type. Higher loadings of pristine MWCNTs were needed to decrease the rate of polymer biodegradation compared to O-MWCNTs, an effect ascribed principally to differences in CNT dispersion within the polymer matrices. Above certain CNT loadings, a CNT mat of similar shape to the initial PNC was formed after polymer biodegradation, while below this threshold, CNT aggregates fragmented in the media. In situations where biodegradation was rapid, methanogen growth was disproportionately inhibited compared to the overall microbial community. Analysis of the results obtained from this study indicates that the inhibitory effect of CNTs on polymer biodegradation rate is greatest under conditions (i.e., polymer type, microbial phenotype, CNT dispersion) where biodegradation of the neat polymer is slowest. This new insight provides a means to predict the environmental fate, persistence, and transformations of CNT-enabled polymer materials.
Asunto(s)
Nanocompuestos , Nanotubos de Carbono , Biodegradación Ambiental , PolímerosRESUMEN
Multicolor carbon dots (CDs) have been developed recently and demonstrate great potential in bio-imaging, sensing, and LEDs. However, the fluorescence mechanism of their tunable colors is still under debate, and efficient separation methods are still challenging. Herein, we synthesized multicolor polymeric CDs through solvothermal treatment of citric acid and urea in formamide. Automated reversed-phase column separation was used to achieve fractions with distinct colors, including blue, cyan, green, yellow, orange and red. This work explores the physicochemical properties and fluorescence origins of the red, green, and blue fractions in depth with combined experimental and computational methods. Three dominant fluorescence mechanism hypotheses were evaluated by comparing time-dependent density functional theory and molecular dynamics calculation results to measured characteristics. We find that blue fluorescence likely comes from embedded small molecules trapped in carbonaceous cages, while pyrene analogs are the most likely origin for emission at other wavelengths, especially in the red. Also important, upon interaction with live cells, different CD color fractions are trafficked to different sub-cellular locations. Super-resolution imaging shows that the blue CDs were found in a variety of organelles, such as mitochondria and lysosomes, while the red CDs were primarily localized in lysosomes. These findings significantly advance our understanding of the photoluminescence mechanism of multicolor CDs and help to guide future design and applications of these promising nanomaterials.
RESUMEN
Organic contaminants at low concentrations, known as micropollutants, are a growing threat to water resources. Implementing novel adsorbents capable of removing micropollutants during packed-bed adsorption is desirable for rapid water purification and other efficient separations. We previously developed porous polymers based on cyclodextrins that demonstrated rapid uptake and high affinity for dozens of micropollutants (MPs) in batch experiments. However, these polymers are typically produced as powders with irregular particle size distributions in the range of tens of micrometers. In this powdered form, cyclodextrin polymers cannot be implemented in packed-bed adsorption processes because the variable particle sizes yield insufficient porosity packing and consequently generate high back-pressure. Here we demonstrate a facile approach to remove micropollutants from water in a continuous manner by polymerizing cyclodextrin polymer networks onto cellulose microcrystals to provide a core/shell structure. Batch adsorption experiments demonstrate rapid pollutant uptake and high accessibility of the cyclodextrins on the adsorbent. Similarly, column experiments demonstrate rapid uptake of a model pollutant with minimal back-pressure, demonstrating potential for use in packed-bed adsorption processes. Furthermore, the pollutant-saturated columns were regenerated using methanol and reused three times with almost no change in performance. Column experiments conducted with a mixture of 15 micropollutants at environmentally relevant concentrations demonstrated that removal was determined by the affinity of each micropollutant for cyclodextrin polymers. The cyclodextrin polymer grafted onto cellulose microcrystals is more resistant to both anaerobic and aerobic biodegradation as compared to cyclodextrins and unmodified cellulose crystals, presumably due to the aromatic cross-linkers, demonstrating persistence. Collectively, the findings from this study demonstrate a general strategy to incorporate novel cyclodextrin adsorbents onto cellulose substrates to enable rapid and efficient removal of micropollutants during packed-bed adsorption as well as their promising long-term stability and regeneration capabilities.
RESUMEN
The properties and commercial viability of biodegradable polymers can be significantly enhanced by the incorporation of carbon nanotubes (CNTs). The environmental impact and persistence of these carbon nanotube/polymer nanocomposites (CNT/PNCs) after disposal will be strongly influenced by their microbial interactions, including their biodegradation rates. At the end of consumer use, CNT/PNCs will encounter diverse communities of microorganisms in landfills, surface waters, and wastewater treatment plants. To explore CNT/PNC biodegradation under realistic environmental conditions, the effect of multi-wall CNT (MWCNT) incorporation on the biodegradation of polyhydroxyalkanoates (PHA) was investigated using a mixed culture of microorganisms from wastewater. Relative to unfilled PHA (0% w/w), the MWCNT loading (0.5-10% w/w) had no statistically significant effect on the rate of PHA matrix biodegradation. Independent of the MWCNT loading, the extent of CNT/PNC mass remaining closely corresponded to the initial mass of CNTs in the matrix suggesting a lack of CNT release. CNT/PNC biodegradation was complete in approximately 20â¯days and resulted in the formation of a compressed CNT mat that retained the shape of the initial CNT/PNC. This study suggests that although CNTs have been shown to be cytotoxic towards a range of different microorganisms, this does not necessarily impact the biodegradation of the surrounding polymer matrix in mixed culture, particularly in situations where the polymer type and/or microbial population favor rapid polymer biodegradation.
Asunto(s)
Biodegradación Ambiental , Nanocompuestos , Nanotubos de Carbono , Polímeros/metabolismo , AerobiosisRESUMEN
As-synthesized malic acid carbon dots are found to possess photoblinking properties that are outstanding and superior compared to those of conventional dyes. Considering their excellent biocompatibility, malic acid carbon dots are suitable for super-resolution fluorescence localization microscopy under a variety of conditions, as we demonstrate in fixed and live trout gill epithelial cells. In addition, during imaging experiments, the so-called "excitation wavelength-dependent" emission was not observed for individual as-made malic acid carbon dots, which motivated us to develop a time-saving and high-throughput separation technique to isolate malic acid carbon dots into fractions of different particle size distributions using C18 reversed-phase silica gel column chromatography. This post-treatment allowed us to determine how particle size distribution influences the optical properties of malic acid carbon dot fractions, that is, optical band gap energies and photoluminescence behaviors.
RESUMEN
In recent decades, the working world has changed dramatically and rising demands on flexibility make the coordination of personal and professional life more difficult. Therefore, it is important that the incumbents are in possession of all necessary information concerning their job. This might be a key issue to remain satisfied. Simultaneously, atypical forms of employment have substantially increased in the labor market; one such form is holding more than one job. While the motives might differ from needing an additional income to broadening job opportunities, practicing several jobs requires coordination and thus, being informed. Building on research regarding organizational constraints and role ambiguity, we hypothesize that the paucity of information is negatively related to (dimensions of) job satisfaction. This effect should be stronger for multiple as compared to single jobbers; specifically when considering the job satisfaction with the social climate, given that being informed by others is an important factor in the coordination of several jobs. Data taken from the BiBB/BAuA-Employment-Survey provide a sample of 17,782 German employees (54% women), including 1,084 multiple jobbers (59% women). Job satisfaction was measured as employees global satisfaction and their satisfaction with facets dimensions: the social climate, structural working conditions, personal growth opportunities, and material incentives they receive for their work. Paucity of information was measured by the frequency of lacked information. Our study indicated that paucity of information was negatively related to both, global and all facets dimensions of job satisfaction. Multiple regression analyses further revealed interaction effects of paucity of information and form of employment. Specifically, the negative correlation of paucity of information with global as well as satisfaction with the social climate was stronger for employees' holding more than one job. These results were independent of age, gender, organizational tenure, working hours, socioeconomic occupational status, as well as important working conditions (workload and autonomy). Incumbents with less paucity of necessary job-related information are more satisfied, especially when they hold multiple jobs. Supervisors and colleagues are advised to provide all necessary information and to ensure that employees retain it.