Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Cell ; 185(9): 1588-1601.e14, 2022 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-35413241

RESUMEN

Immune memory is tailored by cues that lymphocytes perceive during priming. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic created a situation in which nascent memory could be tracked through additional antigen exposures. Both SARS-CoV-2 infection and vaccination induce multifaceted, functional immune memory, but together, they engender improved protection from disease, termed hybrid immunity. We therefore investigated how vaccine-induced memory is shaped by previous infection. We found that following vaccination, previously infected individuals generated more SARS-CoV-2 RBD-specific memory B cells and variant-neutralizing antibodies and a distinct population of IFN-γ and IL-10-expressing memory SARS-CoV-2 spike-specific CD4+ T cells than previously naive individuals. Although additional vaccination could increase humoral memory in previously naive individuals, it did not recapitulate the distinct CD4+ T cell cytokine profile observed in previously infected subjects. Thus, imprinted features of SARS-CoV-2-specific memory lymphocytes define hybrid immunity.


Asunto(s)
Vacunas contra la COVID-19/inmunología , COVID-19 , SARS-CoV-2 , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/inmunología , Humanos , Inmunidad Humoral , Glicoproteína de la Espiga del Coronavirus , Linfocitos T
2.
Cell ; 185(5): 872-880.e3, 2022 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-35123650

RESUMEN

Although infections among vaccinated individuals lead to milder COVID-19 symptoms relative to those in unvaccinated subjects, the specificity and durability of antibody responses elicited by breakthrough cases remain unknown. Here, we demonstrate that breakthrough infections induce serum-binding and -neutralizing antibody responses that are markedly more potent, durable, and resilient to spike mutations observed in variants than those in subjects who received only 2 doses of vaccine. However, we show that breakthrough cases, subjects who were vaccinated after infection, and individuals vaccinated three times have serum-neutralizing activity of comparable magnitude and breadth, indicating that an increased number of exposures to SARS-CoV-2 antigen(s) enhance the quality of antibody responses. Neutralization of SARS-CoV was moderate, however, underscoring the importance of developing vaccines eliciting broad sarbecovirus immunity for pandemic preparedness.

3.
Immunity ; 57(4): 904-911.e4, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38490197

RESUMEN

Immune imprinting describes how the first exposure to a virus shapes immunological outcomes of subsequent exposures to antigenically related strains. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) Omicron breakthrough infections and bivalent COVID-19 vaccination primarily recall cross-reactive memory B cells induced by prior Wuhan-Hu-1 spike mRNA vaccination rather than priming Omicron-specific naive B cells. These findings indicate that immune imprinting occurs after repeated Wuhan-Hu-1 spike exposures, but whether it can be overcome remains unclear. To understand the persistence of immune imprinting, we investigated memory and plasma antibody responses after administration of the updated XBB.1.5 COVID-19 mRNA vaccine booster. We showed that the XBB.1.5 booster elicited neutralizing antibody responses against current variants that were dominated by recall of pre-existing memory B cells previously induced by the Wuhan-Hu-1 spike. Therefore, immune imprinting persists after multiple exposures to Omicron spikes through vaccination and infection, including post XBB.1.5 booster vaccination, which will need to be considered to guide future vaccination.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Humanos , COVID-19/prevención & control , SARS-CoV-2 , Anticuerpos Neutralizantes , ARN Mensajero/genética , Vacunación , Anticuerpos Antivirales
4.
Nature ; 602(7898): 664-670, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35016195

RESUMEN

The recently emerged SARS-CoV-2 Omicron variant encodes 37 amino acid substitutions in the spike protein, 15 of which are in the receptor-binding domain (RBD), thereby raising concerns about the effectiveness of available vaccines and antibody-based therapeutics. Here we show that the Omicron RBD binds to human ACE2 with enhanced affinity, relative to the Wuhan-Hu-1 RBD, and binds to mouse ACE2. Marked reductions in neutralizing activity were observed against Omicron compared to the ancestral pseudovirus in plasma from convalescent individuals and from individuals who had been vaccinated against SARS-CoV-2, but this loss was less pronounced after a third dose of vaccine. Most monoclonal antibodies that are directed against the receptor-binding motif lost in vitro neutralizing activity against Omicron, with only 3 out of 29 monoclonal antibodies retaining unaltered potency, including the ACE2-mimicking S2K146 antibody1. Furthermore, a fraction of broadly neutralizing sarbecovirus monoclonal antibodies neutralized Omicron through recognition of antigenic sites outside the receptor-binding motif, including sotrovimab2, S2X2593 and S2H974. The magnitude of Omicron-mediated immune evasion marks a major antigenic shift in SARS-CoV-2. Broadly neutralizing monoclonal antibodies that recognize RBD epitopes that are conserved among SARS-CoV-2 variants and other sarbecoviruses may prove key to controlling the ongoing pandemic and future zoonotic spillovers.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos Antivirales/inmunología , Deriva y Cambio Antigénico/inmunología , Anticuerpos ampliamente neutralizantes/inmunología , Pruebas de Neutralización , SARS-CoV-2/inmunología , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Monoclonales Humanizados/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/sangre , Deriva y Cambio Antigénico/genética , Vacunas contra la COVID-19/inmunología , Línea Celular , Convalecencia , Epítopos de Linfocito B/inmunología , Humanos , Evasión Inmune , Ratones , SARS-CoV-2/química , SARS-CoV-2/clasificación , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Vesiculovirus/genética
5.
J Immunol ; 210(9): 1236-1246, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36961450

RESUMEN

mRNA vaccination of individuals with prior SARS-CoV-2 infection provides superior protection against breakthrough infections with variants of concern compared with vaccination in the absence of prior infection. However, the immune mechanisms by which this hybrid immunity is generated and maintained are unknown. Whereas genetic variation in spike glycoprotein effectively subverts neutralizing Abs, spike-specific T cells are generally maintained against SARS-CoV-2 variants. Thus, we comprehensively profiled human T cell responses against the S1 and S2 domains of spike glycoprotein in a cohort of SARS-CoV-2-naive (n = 13) or -convalescent (n = 17) individuals who received two-dose mRNA vaccine series and were matched by age, sex, and vaccine type. Using flow cytometry, we observed that the overall functional breadth of CD4 T cells and polyfunctional Th1 responses was similar between the two groups. However, polyfunctional cytotoxic CD4 T cell responses against both S1 and S2 domains trended higher among convalescent subjects. Multimodal single-cell RNA sequencing revealed diverse functional programs in spike-specific CD4 and CD8 T cells in both groups. However, convalescent individuals displayed enhanced cytotoxic and antiviral CD8 T cell responses to both S1 and S2 in the absence of cytokine production. Taken together, our data suggest that cytotoxic CD4 and CD8 T cells targeting spike glycoprotein may partially account for hybrid immunity and protection against breakthrough infections with SARS-CoV-2.


Asunto(s)
COVID-19 , Linfocitos T Citotóxicos , Humanos , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/genética , Infección Irruptiva , ARN Mensajero , Vacunación , Inmunidad Adaptativa , Glicoproteínas , Anticuerpos Antivirales , Anticuerpos Neutralizantes
6.
Emerg Infect Dis ; 30(11): 2250-2260, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39447143

RESUMEN

Congregate homeless shelters are disproportionately affected by infectious disease outbreaks. We describe enterovirus epidemiology across 23 adult and family shelters in King County, Washington, USA, during October 2019-May 2021, by using repeated cross-sectional respiratory illness and environmental surveillance and viral genome sequencing. Among 3,281 participants >3 months of age, we identified coxsackievirus A21 (CVA21) in 39 adult residents (3.0% [95% CI 1.9%-4.8%] detection) across 7 shelters during October 2019-February 2020. We identified enterovirus D68 (EV-D68) in 5 adult residents in 2 shelters during October-November 2019. Of 812 environmental samples, 1 was EV-D68-positive and 5 were CVA21-positive. Other enteroviruses detected among residents, but not in environmental samples, included coxsackievirus A6/A4 in 3 children. No enteroviruses were detected during April 2020-May 2021. Phylogenetically clustered CVA21 and EV-D68 cases occurred in some shelters. Some shelters also hosted multiple CVA21 lineages.


Asunto(s)
Enterovirus Humano D , Infecciones por Enterovirus , Personas con Mala Vivienda , Filogenia , Humanos , Washingtón/epidemiología , Personas con Mala Vivienda/estadística & datos numéricos , Masculino , Adulto , Femenino , Infecciones por Enterovirus/epidemiología , Infecciones por Enterovirus/virología , Enterovirus Humano D/genética , Enterovirus Humano D/clasificación , Persona de Mediana Edad , Genoma Viral , Preescolar , Niño , Enterovirus/genética , Enterovirus/clasificación , Adolescente , Lactante , Brotes de Enfermedades , Adulto Joven , Infecciones por Coxsackievirus/epidemiología , Infecciones por Coxsackievirus/virología , Estudios Transversales , Anciano , Vivienda
7.
PLoS Pathog ; 18(6): e1010592, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35767821

RESUMEN

Exposure histories to SARS-CoV-2 variants and vaccinations will shape the specificity of antibody responses. To understand the specificity of Delta-elicited antibody immunity, we characterize the polyclonal antibody response elicited by primary or mRNA vaccine-breakthrough Delta infections. Both types of infection elicit a neutralizing antibody response focused heavily on the receptor-binding domain (RBD). We use deep mutational scanning to show that mutations to the RBD's class 1 and class 2 epitopes, including sites 417, 478, and 484-486 often reduce binding of these Delta-elicited antibodies. The anti-Delta antibody response is more similar to that elicited by early 2020 viruses than the Beta variant, with mutations to the class 1 and 2, but not class 3 epitopes, having the largest effects on polyclonal antibody binding. In addition, mutations to the class 1 epitope (e.g., K417N) tend to have larger effects on antibody binding and neutralization in the Delta spike than in the D614G spike, both for vaccine- and Delta-infection-elicited antibodies. These results help elucidate how the antigenic impacts of SARS-CoV-2 mutations depend on exposure history.


Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Formación de Anticuerpos , Epítopos , Humanos , Pruebas de Neutralización , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Vacunas Sintéticas , Vacunas de ARNm
8.
bioRxiv ; 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38076876

RESUMEN

Immune imprinting - also known as 'original antigenic sin' - describes how the first exposure to a virus shapes the immunological outcome of subsequent exposures to antigenically related strains. SARS-CoV-2 Omicron breakthrough infections and bivalent COVID-19 vaccination were shown to primarily recall cross-reactive memory B cells and antibodies induced by prior mRNA vaccination with the Wuhan-Hu-1 spike rather than priming naive B cells that recognize Omicron-specific epitopes. These findings underscored a strong immune imprinting resulting from repeated Wuhan-Hu-1 spike exposures. To understand if immune imprinting can be overcome, we investigated memory and plasma antibody responses after administration of the updated XBB.1.5 COVID mRNA vaccine booster. Our data show that the XBB.1.5 booster elicits neutralizing antibody responses against current variants that are dominated by recall of pre-existing memory B cells previously induced by the Wuhan-Hu-1 spike. These results indicate that immune imprinting persists even after multiple exposures to Omicron spikes through vaccination and infection, including post XBB.1.5 spike booster mRNA vaccination, which will need to be considered to guide the design of future vaccine boosters.

9.
mBio ; 14(4): e0090223, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37535402

RESUMEN

While immune correlates against SARS-CoV-2 are typically defined at peak immunogenicity following vaccination, immunologic responses that expand selectively during the anamnestic response following infection can provide mechanistic and detailed insights into the immune mechanisms of protection. Moreover, whether anamnestic correlates are conserved across variants of concern (VOC), including the Delta and more distant Omicron VOC, remains unclear. To define the anamnestic correlates of immunity, across VOCs, we deeply profiled the humoral immune response in individuals infected with sequence-confirmed Delta or Omicron VOC after completing the vaccination series. While limited acute N-terminal domain and receptor-binding domain (RBD)-specific immune expansion was observed following breakthrough infection, a significant immunodominant expansion of opsonophagocytic Spike-specific antibody responses focused largely on the conserved S2-domain of SARS-CoV-2 was observed. This S2-specific functional humoral response continued to evolve over 2-3 weeks following Delta or Omicron breakthrough, targeting multiple VOCs and common coronaviruses. Strong responses were observed on the fusion peptide (FP) region and the heptad repeat 1 (HR1) region adjacent to the RBD. Notably, the FP is highly conserved across SARS-related coronaviruses and even non-SARS-related betacoronavirus. Taken together, our results point to a critical role of highly conserved, functional S2-specific responses in the anamnestic antibody response to SARS-CoV-2 infection across VOCs. These humoral responses linked to virus clearance can guide next-generation vaccine-boosting approaches to confer broad protection against future SARS-related coronaviruses. IMPORTANCE The Spike protein of SARS-CoV-2 is the primary target of antibody-based recognition. Selective pressures, be it the adaption to human-to-human transmission or evasion of previously acquired immunity, have spurred the emergence of variants of the virus such as the Delta and Omicron lineages. Therefore, understanding how antibody responses are expanded in breakthrough cases of previously vaccinated individuals can provide insights into key correlates of protection against current and future variants. Here, we show that vaccinated individuals who had documented COVID-19 breakthrough showed anamnestic antibody expansions targeting the conserved S2 subdomain of Spike, particularly within the fusion peptide region. These S2-directed antibodies were highly leveraged for non-neutralizing, phagocytic functions and were similarly expanded independent of the variant. We propose that through deep profiling of anamnestic antibody responses in breakthrough cases, we can identify antigen targets susceptible to novel monoclonal antibody therapy or vaccination-boosting strategies.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2/genética , Anticuerpos , Anticuerpos Antivirales , Anticuerpos Neutralizantes
10.
Viruses ; 15(2)2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36851745

RESUMEN

New variants of SARS-CoV-2 continue to emerge and evade immunity. We isolated SARS-CoV-2 temporally across the pandemic starting with the first emergence of the virus in the western hemisphere and evaluated the immune escape among variants. A clinic-to-lab viral isolation and characterization pipeline was established to rapidly isolate, sequence, and characterize SARS-CoV-2 variants. A virus neutralization assay was applied to quantitate humoral immunity from infection and/or vaccination. A panel of novel monoclonal antibodies was evaluated for antiviral efficacy. We directly compared all variants, showing that convalescence greater than 5 months post-symptom onset from ancestral virus provides little protection against SARS-CoV-2 variants. Vaccination enhances immunity against viral variants, except for Omicron BA.1, while a three-dose vaccine regimen provides over 50-fold enhanced protection against Omicron BA.1 compared to a two-dose. A novel Mab neutralizes Omicron BA.1 and BA.2 variants better than the clinically approved Mabs, although neither can neutralize Omicron BA.4 or BA.5. Thus, the need remains for continued vaccination-booster efforts, with innovation for vaccine and Mab improvement for broadly neutralizing activity. The usefulness of specific Mab applications links with the window of clinical opportunity when a cognate viral variant is present in the infected population.


Asunto(s)
COVID-19 , Humanos , COVID-19/prevención & control , SARS-CoV-2/genética , Anticuerpos Monoclonales , Antivirales
11.
bioRxiv ; 2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36711984

RESUMEN

Currently circulating SARS-CoV-2 variants acquired convergent mutations at receptor-binding domain (RBD) hot spots. Their impact on viral infection, transmission, and efficacy of vaccines and therapeutics remains poorly understood. Here, we demonstrate that recently emerged BQ.1.1. and XBB.1 variants bind ACE2 with high affinity and promote membrane fusion more efficiently than earlier Omicron variants. Structures of the BQ.1.1 and XBB.1 RBDs bound to human ACE2 and S309 Fab (sotrovimab parent) explain the altered ACE2 recognition and preserved antibody binding through conformational selection. We show that sotrovimab binds avidly to all Omicron variants, promotes Fc-dependent effector functions and protects mice challenged with BQ.1.1, the variant displaying the greatest loss of neutralization. Moreover, in several donors vaccine-elicited plasma antibodies cross-react with and trigger effector functions against Omicron variants despite reduced neutralizing activity. Cross-reactive RBD-directed human memory B cells remained dominant even after two exposures to Omicron spikes, underscoring persistent immune imprinting. Our findings suggest that this previously overlooked class of cross-reactive antibodies, exemplified by S309, may contribute to protection against disease caused by emerging variants through elicitation of effector functions.

12.
Elife ; 112022 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-35072628

RESUMEN

Background: Control of the COVID-19 pandemic will rely on SARS-CoV-2 vaccine-elicited antibodies to protect against emerging and future variants; an understanding of the unique features of the humoral responses to infection and vaccination, including different vaccine platforms, is needed to achieve this goal. Methods: The epitopes and pathways of escape for Spike-specific antibodies in individuals with diverse infection and vaccination history were profiled using Phage-DMS. Principal component analysis was performed to identify regions of antibody binding along the Spike protein that differentiate the samples from one another. Within these epitope regions, we determined potential sites of escape by comparing antibody binding of peptides containing wild-type residues versus peptides containing a mutant residue. Results: Individuals with mild infection had antibodies that bound to epitopes in the S2 subunit within the fusion peptide and heptad-repeat regions, whereas vaccinated individuals had antibodies that additionally bound to epitopes in the N- and C-terminal domains of the S1 subunit, a pattern that was also observed in individuals with severe disease due to infection. Epitope binding appeared to change over time after vaccination, but other covariates such as mRNA vaccine dose, mRNA vaccine type, and age did not affect antibody binding to these epitopes. Vaccination induced a relatively uniform escape profile across individuals for some epitopes, whereas there was much more variation in escape pathways in mildly infected individuals. In the case of antibodies targeting the fusion peptide region, which was a common response to both infection and vaccination, the escape profile after infection was not altered by subsequent vaccination. Conclusions: The finding that SARS-CoV-2 mRNA vaccination resulted in binding to additional epitopes beyond what was seen after infection suggests that protection could vary depending on the route of exposure to Spike antigen. The relatively conserved escape pathways to vaccine-induced antibodies relative to infection-induced antibodies suggests that if escape variants emerge they may be readily selected for across vaccinated individuals. Given that the majority of people will be first exposed to Spike via vaccination and not infection, this work has implications for predicting the selection of immune escape variants at a population level. Funding: This work was supported by NIH grants AI138709 (PI JMO) and AI146028 (PI FAM). JMO received support as the Endowed Chair for Graduate Education (FHCRC). The research of FAM was supported in part by a Faculty Scholar grant from the Howard Hughes Medical Institute and the Simons Foundation. Scientific Computing Infrastructure at Fred Hutch was funded by ORIP grant S10OD028685.


When SARS-CoV-2 ­ the virus that causes COVID-19 ­ infects our bodies, our immune system reacts by producing small molecules called antibodies that stick to a part of the virus called the spike protein. Vaccines are thought to work by triggering the production of similar antibodies without causing disease. Some of the most effective antibodies against SARS-CoV-2 bind a specific area of the spike protein called the 'receptor binding domain' or RBD. When SARS-CoV-2 evolves it creates a challenge for our immune system: mutations, which are changes in the virus's genetic code, can alter the shape of its spike protein, meaning that existing antibodies may no longer bind to it as effectively. This lowers the protection offered by past infection or vaccination, which makes it harder to tackle the pandemic. As it stands, it is not clear which mutations to the virus's genetic code can affect antibody binding, especially to portions outside the RBD. To complicate things further, the antibodies people produce in response to mild infection, severe infection, and vaccination, while somewhat overlapping, exhibit some differences. Studying these differences could help minimize emergence of mutations that allow the virus to 'escape' the antibody response. A phage display library is a laboratory technique in which phages (viruses that infect bacteria) are used as a 'repository' for DNA fragments that code for a specific protein. The phages can then produce the protein (or fragments of it), and if the protein fragments bind to a target, it can be easily detected. Garrett, Galloway et al. exploited this technique to study how different portions of the SARS-CoV-2 spike protein were bound by antibodies. They made a phage library in which each phage encoded a portion of the spike protein with different mutations, and then exposed the different versions of the protein to antibodies from people who had experienced prior infection, vaccination, or both. The experiment showed that antibodies produced during severe infection or after vaccination bound to similar parts of the spike protein, while antibodies from people who had experienced mild infection targeted fewer areas. Garrett, Galloway et al. also found that mutations that affected the binding of antibodies produced after vaccination were more consistent than mutations that interfered with antibodies produced during infection. While these results show which mutations are most likely to help the virus escape existing antibodies, this does not mean that the virus will necessarily evolve in that direction. Indeed, some of the mutations may be impossible for the virus to acquire because they interfere with the virus's ability to spread. Further studies could focus on revealing which of the mutations detected by Garrett, Galloway et al. are most likely to occur, to guide vaccine development in that direction. To help with this, Garrett, Galloway et al. have made the data accessible to other scientists and the public using a web tool.


Asunto(s)
Deriva y Cambio Antigénico , Vacunas contra la COVID-19/inmunología , COVID-19/inmunología , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Epítopos , Humanos , Vacunación Masiva
13.
J Immunol Methods ; 510: 113328, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35934070

RESUMEN

Monocytes are highly versatile innate immune cells responsible for pathogen clearance, innate immune coordination, and induction of adaptive immunity. Monocytes can directly and indirectly integrate pathogen-destructive instructions and contribute to disease control via pathogen uptake, presentation, or the release of cytokines. Indirect pathogen-specific instructions are conferred via Fc-receptor signaling and triggered by antibody opsonized material. Given the tremendous variation in polyclonal humoral immunity, defining the specific antibody-responses able to arm monocytes most effectively remains incompletely understood. While monocyte cell line-based assays have been used previously, cell lines may not faithfully recapitulate the full biology of monocytes. Thus, here we describe a multifaceted antigen-specific method for probing antibody-dependent primary monocyte phagocytosis (ADMP) and secondary responses. The assay not only reliably captures phagocytic uptake of immune complexes, but also detects unique changes in surface markers and cytokine secretions profiles, poorly detected by monocytic cell lines. The assay captures divergent polyclonal-monocyte recruiting activity across subjects with varying SARS-CoV-2 disease severity and also revealed biological nuances in Fc-mutant monoclonal antibody activity related to differences in Fc-receptor binding. Thus, the ADMP assay is a flexible assay able to provide key insights into the role of humoral immunity in driving monocyte phenotypic transitions and downstream functions across many diseases.


Asunto(s)
COVID-19 , Monocitos , Anticuerpos Monoclonales , Complejo Antígeno-Anticuerpo , Antígenos , Citocinas , Humanos , Fragmentos Fc de Inmunoglobulinas , Fagocitosis , SARS-CoV-2
14.
bioRxiv ; 2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-36093349

RESUMEN

Neutralization assays are experimental surrogates for the effectiveness of infection- or vaccine-elicited polyclonal antibodies and therapeutic monoclonal antibodies targeting SARS-CoV-2. However, the measured neutralization can depend on details of the experimental assay. Here we systematically assess how ACE2 expression in target cells affects neutralization by antibodies to different spike epitopes in lentivirus pseudovirus neutralization assays. For high ACE2-expressing target cells, receptor binding domain (RBD) antibodies account for nearly all neutralizing activity in polyclonal human sera. But for lower ACE2-expressing target cells, antibodies targeting regions outside the RBD make a larger (although still modest) contribution to serum neutralization. These serum-level results are mirrored for monoclonal antibodies: N-terminal domain (NTD) antibodies and RBD antibodies that do not compete for ACE2 binding incompletely neutralize on high ACE2-expressing target cells, but completely neutralize on cells with lower ACE2 expression. Our results show that ACE2 expression level in the target cells is an important experimental variable, and that high ACE2 expression emphasizes the role of a subset of RBD-directed antibodies.

15.
Viruses ; 14(9)2022 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-36146867

RESUMEN

Neutralization assays are experimental surrogates for the effectiveness of infection- or vaccine-elicited polyclonal antibodies and therapeutic monoclonal antibodies targeting SARS-CoV-2. However, the measured neutralization can depend on the details of the experimental assay. Here, we systematically assess how ACE2 expression in target cells affects neutralization by antibodies to different spike epitopes in lentivirus pseudovirus neutralization assays. For high ACE2-expressing target cells, receptor-binding domain (RBD) antibodies account for nearly all neutralizing activity in polyclonal human sera. However, for lower ACE2-expressing target cells, antibodies targeting regions outside the RBD make a larger (although still modest) contribution to serum neutralization. These serum-level results are mirrored for monoclonal antibodies: N-terminal domain (NTD) antibodies and RBD antibodies that do not compete for ACE2 binding incompletely neutralize on high ACE2-expressing target cells, but completely neutralize on cells with lower ACE2 expression. Our results show that the ACE2 expression level in the target cells is an important experimental variable, and that high ACE2 expression emphasizes the role of a subset of RBD-directed antibodies.


Asunto(s)
COVID-19 , SARS-CoV-2 , Enzima Convertidora de Angiotensina 2 , Anticuerpos Monoclonales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Epítopos , Humanos , Glicoproteína de la Espiga del Coronavirus
16.
bioRxiv ; 2022 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-35313588

RESUMEN

Exposure histories to SARS-CoV-2 variants and vaccinations will shape the specificity of antibody responses. To understand the specificity of Delta-elicited antibody immunity, we characterize the polyclonal antibody response elicited by primary or mRNA vaccine-breakthrough Delta infections. Both types of infection elicit a neutralizing antibody response focused heavily on the receptor-binding domain (RBD). We use deep mutational scanning to show that mutations to the RBD's class 1 and class 2 epitopes, including sites 417, 478, and 484-486 often reduce binding of these Delta-elicited antibodies. The anti-Delta antibody response is more similar to that elicited by early 2020 viruses than the Beta variant, with mutations to the class 1 and 2, but not class 3 epitopes, having the largest effects on polyclonal antibody binding. In addition, mutations to the class 1 epitope (e.g., K417N) tend to have larger effects on antibody binding and neutralization in the Delta spike than in the D614G spike, both for vaccine- and Delta-infection-elicited antibodies. These results help elucidate how the antigenic impacts of SARS-CoV-2 mutations depend on exposure history.

17.
medRxiv ; 2022 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-36032965

RESUMEN

To evaluate SARS-CoV-2 variants we isolated SARS-CoV-2 temporally during the pandemic starting with first appearance of virus in the Western hemisphere near Seattle, WA, USA, and isolated each known major variant class, revealing the dynamics of emergence and complete take-over of all new cases by current Omicron variants. We assessed virus neutralization in a first-ever full comparison across variants and evaluated a novel monoclonal antibody (Mab). We found that convalescence greater than 5-months provides little-to-no protection against SARS-CoV-2 variants, vaccination enhances immunity against variants with the exception of Omicron BA.1, and paired testing of vaccine sera against ancestral virus compared to Omicron BA.1 shows that 3-dose vaccine regimen provides over 50-fold enhanced protection against Omicron BA.1 compared to a 2-dose regimen. We also reveal a novel Mab that effectively neutralizes Omicron BA.1 and BA.2 variants over clinically-approved Mabs. Our observations underscore the need for continued vaccination efforts, with innovation for vaccine and Mab improvement, for protection against variants of SARS-CoV-2. Summary: We isolated SARS-CoV-2 temporally starting with emergence of virus in the Western hemisphere. Neutralization analyses across all variant lineages show that vaccine-boost regimen provides protection against Omicron BA.1. We reveal a Mab that protects against Omicron BA.1 and BA.2 variants.

18.
bioRxiv ; 2022 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-35313570

RESUMEN

The SARS-CoV-2 Omicron variant of concern comprises three sublineages designated BA.1, BA.2, and BA.3, with BA.2 steadily replacing the globally dominant BA.1. We show that the large number of BA.1 and BA.2 spike mutations severely dampen plasma neutralizing activity elicited by infection or seven clinical vaccines, with cross-neutralization of BA.2 being consistently more potent than that of BA.1, independent of the vaccine platform and number of doses. Although mRNA vaccines induced the greatest magnitude of Omicron BA.1 and BA.2 plasma neutralizing activity, administration of a booster based on the Wuhan-Hu-1 spike sequence markedly increased neutralizing antibody titers and breadth against BA.1 and BA.2 across all vaccines evaluated. Our data suggest that although BA.1 and BA.2 evade polyclonal neutralizing antibody responses, current vaccine boosting regimens may provide sufficient protection against Omicron-induced disease.

19.
Science ; 377(6608): 890-894, 2022 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-35857529

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant of concern comprises several sublineages, with BA.2 and BA.2.12.1 having replaced the previously dominant BA.1 and with BA.4 and BA.5 increasing in prevalence worldwide. We show that the large number of Omicron sublineage spike mutations leads to enhanced angiotensin-converting enzyme 2 (ACE2) binding, reduced fusogenicity, and severe dampening of plasma neutralizing activity elicited by infection or seven clinical vaccines relative to the ancestral virus. Administration of a homologous or heterologous booster based on the Wuhan-Hu-1 spike sequence markedly increased neutralizing antibody titers and breadth against BA.1, BA.2, BA.2.12.1, BA.4, and BA.5 across all vaccines evaluated. Our data suggest that although Omicron sublineages evade polyclonal neutralizing antibody responses elicited by primary vaccine series, vaccine boosters may provide sufficient protection against Omicron-induced severe disease.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , Vacunas contra la COVID-19 , COVID-19 , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , COVID-19/sangre , COVID-19/prevención & control , Vacunas contra la COVID-19/inmunología , Humanos , Inmunización Secundaria , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología
20.
Science ; 378(6620): 619-627, 2022 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-36264829

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron sublineages carry distinct spike mutations resulting in escape from antibodies induced by previous infection or vaccination. We show that hybrid immunity or vaccine boosters elicit plasma-neutralizing antibodies against Omicron BA.1, BA.2, BA.2.12.1, and BA.4/5, and that breakthrough infections, but not vaccination alone, induce neutralizing antibodies in the nasal mucosa. Consistent with immunological imprinting, most antibodies derived from memory B cells or plasma cells of Omicron breakthrough cases cross-react with the Wuhan-Hu-1, BA.1, BA.2, and BA.4/5 receptor-binding domains, whereas Omicron primary infections elicit B cells of narrow specificity up to 6 months after infection. Although most clinical antibodies have reduced neutralization of Omicron, we identified an ultrapotent pan-variant-neutralizing antibody that is a strong candidate for clinical development.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , Formación de Anticuerpos , COVID-19 , Evasión Inmune , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Humanos , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/inmunología , Pruebas de Neutralización , SARS-CoV-2/genética , SARS-CoV-2/inmunología , Memoria Inmunológica , Células B de Memoria/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA