Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Arch Toxicol ; 97(7): 1831-1846, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37204436

RESUMEN

Bisphenol A (BPA) is a known endocrine disruptor found in many consumer products that humans come into contact with on a daily basis. Due to increasing concerns about the safety of BPA and the introduction of new legislation restricting its use, industry has responded by adopting new, less studied BPA analogues that have similar polymer-forming properties. Some BPA analogues have already been shown to exhibit effects similar to BPA, for example, contributing to endocrine disruption through agonistic or antagonistic behaviour at various nuclear receptors such as estrogen (ER), androgen (AR), glucocorticoid (GR), aryl hydrocarbon (AhR), and pregnane X receptor (PXR). Since the European Food Safety Authority (EFSA) issued a draft re-evaluation of BPA and drastically reduced the temporary tolerable daily intake (t-TDI) of BPA from 4 mg/kg body weight/day to 0.2 ng/kg body weight/day due to increasing concern about the toxic properties of BPA, including its potential to disrupt immune system processes, we conducted a comprehensive review of the immunomodulatory activity of environmentally abundant BPA analogues. The results of the review suggest that BPA analogues may affect both the innate and acquired immune systems and can contribute to various immune-mediated conditions such as hypersensitivity reactions, allergies, and disruption of the human microbiome.


Asunto(s)
Disruptores Endocrinos , Receptores Citoplasmáticos y Nucleares , Humanos , Fenoles/toxicidad , Compuestos de Bencidrilo/toxicidad , Peso Corporal , Disruptores Endocrinos/toxicidad
2.
Int J Mol Sci ; 23(8)2022 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-35457075

RESUMEN

RT-qPCR is the gold standard and the most commonly used method for measuring gene expression. Selection of appropriate reference gene(s) for normalization is a crucial part of RT-qPCR experimental design, which allows accurate quantification and reliability of the results. Because there is no universal reference gene and even commonly used housekeeping genes' expression can vary under certain conditions, careful selection of an appropriate internal control must be performed for each cell type or tissue and experimental design. The aim of this study was to identify the most stable reference genes during osteogenic differentiation of the human osteosarcoma cell lines MG-63, HOS, and SaOS-2 using the geNorm, NormFinder, and BestKeeper statistical algorithms. Our results show that TBP, PPIA, YWHAZ, and EF1A1 are the most stably expressed genes, while ACTB, and 18S rRNA expressions are most variable. These data provide a basis for future RT-qPCR normalizations when studying gene expression during osteogenic differentiation, for example, in studies of osteoporosis and other bone diseases.


Asunto(s)
Genes Esenciales , Osteogénesis , Proteínas 14-3-3/genética , Perfilación de la Expresión Génica/métodos , Humanos , Osteogénesis/genética , Isomerasa de Peptidilprolil , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Estándares de Referencia , Reproducibilidad de los Resultados , Proteína de Unión a TATA-Box
3.
J Enzyme Inhib Med Chem ; 34(1): 31-43, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30362368

RESUMEN

The lack of efficacy of current antibacterials to treat multidrug resistant bacteria poses a life-threatening alarm. In order to develop enhancers of the antibacterial activity, we carried out a medicinal chemistry campaign aiming to develop inhibitors of enzymes that synthesise cysteine and belong to the reductive sulphur assimilation pathway, absent in mammals. Previous studies have provided a novel series of inhibitors for O-acetylsulfhydrylase - a key enzyme involved in cysteine biosynthesis. Despite displaying nanomolar affinity, the most active representative of the series was not able to interfere with bacterial growth, likely due to poor permeability. Therefore, we rationally modified the structure of the hit compound with the aim of promoting their passage through the outer cell membrane porins. The new series was evaluated on the recombinant enzyme from Salmonella enterica serovar Typhimurium, with several compounds able to keep nanomolar binding affinity despite the extent of chemical manipulation.


Asunto(s)
Antibacterianos/farmacología , Ácidos Carboxílicos/farmacología , Ciclopropanos/farmacología , Cisteína Sintasa/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Antibacterianos/síntesis química , Antibacterianos/química , Ácidos Carboxílicos/síntesis química , Ácidos Carboxílicos/química , Ciclopropanos/síntesis química , Ciclopropanos/química , Cisteína Sintasa/metabolismo , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Escherichia coli/efectos de los fármacos , Isoenzimas/antagonistas & inhibidores , Isoenzimas/metabolismo , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Salmonella typhimurium/enzimología , Relación Estructura-Actividad
4.
Int J Mol Sci ; 20(20)2019 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-31640223

RESUMEN

The formation of multienzymatic complexes allows for the fine tuning of many aspects of enzymatic functions, such as efficiency, localization, stability, and moonlighting. Here, we investigated, in solution, the structure of bacterial cysteine synthase (CS) complex. CS is formed by serine acetyltransferase (CysE) and O-acetylserine sulfhydrylase isozyme A (CysK), the enzymes that catalyze the last two steps of cysteine biosynthesis in bacteria. CysK and CysE have been proposed as potential targets for antibiotics, since cysteine and related metabolites are intimately linked to protection of bacterial cells against redox damage and to antibiotic resistance. We applied a combined approach of small-angle X-ray scattering (SAXS) spectroscopy and protein painting to obtain a model for the solution structure of CS. Protein painting allowed the identification of protein-protein interaction hotspots that were then used as constrains to model the CS quaternary assembly inside the SAXS envelope. We demonstrate that the active site entrance of CysK is involved in complex formation, as suggested by site-directed mutagenesis and functional studies. Furthermore, complex formation involves a conformational change in one CysK subunit that is likely transmitted through the dimer interface to the other subunit, with a regulatory effect. Finally, SAXS data indicate that only one active site of CysK is involved in direct interaction with CysE and unambiguously unveil the quaternary arrangement of CS.


Asunto(s)
Bacterias/enzimología , Cisteína Sintasa/química , Cisteína Sintasa/metabolismo , Serina O-Acetiltransferasa/química , Serina O-Acetiltransferasa/metabolismo , Bacterias/química , Bacterias/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Dominio Catalítico , Cisteína Sintasa/genética , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Modelos Moleculares , Complejos Multienzimáticos/química , Complejos Multienzimáticos/genética , Mutagénesis Sitio-Dirigida , Mapas de Interacción de Proteínas , Dispersión del Ángulo Pequeño , Serina O-Acetiltransferasa/genética , Difracción de Rayos X
5.
J Chem Inf Model ; 58(3): 710-723, 2018 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-29481752

RESUMEN

Saturation transfer difference (STD) is an NMR technique conventionally applied in drug discovery to identify ligand moieties relevant for binding to protein cavities. This is important to direct medicinal chemistry efforts in small-molecule optimization processes. However, STD does not provide any structural details about the ligand-target complex under investigation. Herein, we report the application of a new integrated approach, which combines enhanced sampling methods with STD experiments, for the characterization of ligand-target complexes that are instrumental for drug design purposes. As an example, we have studied the interaction between StOASS-A, a potential antibacterial target, and an inhibitor previously reported. This approach allowed us to consider the ligand-target complex from a dynamic point of view, revealing the presence of an accessory subpocket which can be exploited to design novel StOASS-A inhibitors. As a proof of concept, a small library of derivatives was designed and evaluated in vitro, displaying the expected activity.


Asunto(s)
Cisteína Sintasa/antagonistas & inhibidores , Cisteína Sintasa/metabolismo , Descubrimiento de Drogas/métodos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Salmonella typhimurium/enzimología , Antibacterianos/química , Antibacterianos/farmacología , Sitios de Unión , Cisteína Sintasa/química , Diseño de Fármacos , Ligandos , Espectroscopía de Resonancia Magnética/métodos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Salmonella typhimurium/efectos de los fármacos , Termodinámica
6.
J Enzyme Inhib Med Chem ; 33(1): 1343-1351, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30251899

RESUMEN

O-acetylserine sulfhydrylase (OASS) is the pyridoxal 5'-phosphate dependent enzyme that catalyses the formation of L-cysteine in bacteria and plants. Its inactivation is pursued as a strategy for the identification of novel antibiotics that, targeting dispensable proteins, holds a great promise for circumventing resistance development. In the present study, we have investigated the reactivity of Salmonella enterica serovar Typhimurium OASS-A and OASS-B isozymes with fluoroalanine derivatives. Monofluoroalanine reacts with OASS-A and OASS-B forming either a stable or a metastable α-aminoacrylate Schiff's base, respectively, as proved by spectral changes. This finding indicates that monofluoroalanine is a substrate analogue, as previously found for other beta-halogenalanine derivatives. Trifluoroalanine caused different and time-dependent absorbance and fluorescence spectral changes for the two isozymes and is associated with irreversible inhibition. The time course of enzyme inactivation was found to be characterised by a biphasic behaviour. Partially distinct inactivation mechanisms for OASS-A and OASS-B are proposed.


Asunto(s)
Alanina/análogos & derivados , Cisteína Sintasa/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Alanina/síntesis química , Alanina/química , Alanina/farmacología , Cisteína Sintasa/metabolismo , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Estructura Molecular , Salmonella enterica/enzimología , Relación Estructura-Actividad
7.
J Enzyme Inhib Med Chem ; 33(1): 1444-1452, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30221554

RESUMEN

Several bacteria rely on the reductive sulphur assimilation pathway, absent in mammals, to synthesise cysteine. Reduction of virulence and decrease in antibiotic resistance have already been associated with mutations on the genes that codify cysteine biosynthetic enzymes. Therefore, inhibition of cysteine biosynthesis has emerged as a promising strategy to find new potential agents for the treatment of bacterial infection. Following our previous efforts to explore OASS inhibition and to expand and diversify our library, a scaffold hopping approach was carried out, with the aim of identifying a novel fragment for further development. This novel chemical tool, endowed with favourable pharmacological characteristics, was successfully developed, and a preliminary Structure-Activity Relationship investigation was carried out.


Asunto(s)
Cisteína Sintasa/antagonistas & inhibidores , Diseño de Fármacos , Bibliotecas de Moléculas Pequeñas/química , Antibacterianos/síntesis química , Antibacterianos/química , Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Bacterias/enzimología , Bacterias/genética , Sitios de Unión , Bioensayo , Simulación por Computador , ADN Recombinante/química , ADN Recombinante/genética , Ligandos , Modelos Moleculares , Bibliotecas de Moléculas Pequeñas/síntesis química , Bibliotecas de Moléculas Pequeñas/farmacología , Relación Estructura-Actividad
8.
J Enzyme Inhib Med Chem ; 31(sup4): 78-87, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27578398

RESUMEN

Cysteine is a building block for many biomolecules that are crucial for living organisms. O-Acetylserine sulfhydrylase (OASS), present in bacteria and plants but absent in mammals, catalyzes the last step of cysteine biosynthesis. This enzyme has been deeply investigated because, beside the biosynthesis of cysteine, it exerts a series of "moonlighting" activities in bacteria. We have previously reported a series of molecules capable of inhibiting Salmonella typhimurium (S. typhymurium) OASS isoforms at nanomolar concentrations, using a combination of computational and spectroscopic approaches. The cyclopropane-1,2-dicarboxylic acids presented herein provide further insights into the binding mode of small molecules to OASS enzymes. Saturation transfer difference NMR (STD-NMR) was used to characterize the molecule/enzyme interactions for both OASS-A and B. Most of the compounds induce a several fold increase in fluorescence emission of the pyridoxal 5'-phosphate (PLP) coenzyme upon binding to either OASS-A or OASS-B, making these compounds excellent tools for the development of competition-binding experiments.


Asunto(s)
Ciclopropanos/farmacología , Cisteína Sintasa/antagonistas & inhibidores , Ácidos Dicarboxílicos/farmacología , Inhibidores Enzimáticos/farmacología , Fluorometría , Ciclopropanos/síntesis química , Ciclopropanos/química , Cisteína Sintasa/química , Cisteína Sintasa/metabolismo , Ácidos Dicarboxílicos/síntesis química , Ácidos Dicarboxílicos/química , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Espectroscopía de Resonancia Magnética , Simulación del Acoplamiento Molecular , Estructura Molecular , Relación Estructura-Actividad
9.
Front Toxicol ; 6: 1339104, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38654939

RESUMEN

As a complex system governing and interconnecting numerous functions within the human body, the immune system is unsurprisingly susceptible to the impact of toxic chemicals. Toxicants can influence the immune system through a multitude of mechanisms, resulting in immunosuppression, hypersensitivity, increased risk of autoimmune diseases and cancer development. At present, the regulatory assessment of the immunotoxicity of chemicals relies heavily on rodent models and a limited number of Organisation for Economic Co-operation and Development (OECD) test guidelines, which only capture a fraction of potential toxic properties. Due to this limitation, various authorities, including the World Health Organization and the European Food Safety Authority have highlighted the need for the development of novel approaches without the use of animals for immunotoxicity testing of chemicals. In this paper, we present a concise overview of ongoing efforts dedicated to developing and standardizing methodologies for a comprehensive characterization of the immunotoxic effects of chemicals, which are performed under the EU-funded Partnership for the Assessment of Risk from Chemicals (PARC).

10.
Pharmaceuticals (Basel) ; 15(6)2022 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-35745685

RESUMEN

Antibacterial adjuvants are of great significance, since they allow one to downscale the therapeutic dose of conventional antibiotics and reduce the insurgence of antibacterial resistance. Herein, we report that O-acetylserine sulfhydrylase (OASS) inhibitors could be used as colistin adjuvants to treat infections caused by critical pathogens spreading worldwide, Escherichia coli, Salmonella enterica serovar Typhimurium, and Klebsiella pneumoniae. Starting from a hit compound endowed with a nanomolar dissociation constant, we have rationally designed and synthesized a series of derivatives to be tested against S. Typhimurium OASS isoenzymes, StOASS-A and StOASS-B. All acidic derivatives have shown good activities in the nanomolar range against both OASS isoforms in vitro. Minimal Inhibitory Concentrations (MICs) were then evaluated, as well as compounds' toxicity. The compounds endowed with good activity in vitro and low cytotoxicity have been challenged as a potential colistin adjuvant against pathogenic bacteria in vitro and the fractional inhibitory concentration (FIC) index has been calculated to define additive or synergistic effects. Finally, the target engagement inside the S. Typhimurium cells was confirmed by using a mutant strain in which the OASS enzymes were inactivated. Our results provide a robust proof of principle supporting OASS as a potential nonessential antibacterial target to develop a new class of adjuvants.

11.
Pharmaceuticals (Basel) ; 14(2)2021 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-33672408

RESUMEN

Many bacteria and actinomycetales use L-cysteine biosynthesis to increase their tolerance to antibacterial treatment and establish a long-lasting infection. In turn, this might lead to the onset of antimicrobial resistance that currently represents one of the most menacing threats to public health worldwide. The biosynthetic machinery required to synthesise L-cysteine is absent in mammals; therefore, its exploitation as a drug target is particularly promising. In this article, we report a series of inhibitors of Salmonella thyphimurium serine acetyltransferase (SAT), the enzyme that catalyzes the rate-limiting step of L-cysteine biosynthesis. The development of such inhibitors started with the virtual screening of an in-house library of compounds that led to the selection of seven structurally unrelated hit derivatives. A set of molecules structurally related to hit compound 5, coming either from the original library or from medicinal chemistry efforts, were tested to determine a preliminary structure-activity relationship and, especially, to improve the inhibitory potency of the derivatives, that was indeed ameliorated by several folds compared to hit compound 5 Despite these progresses, at this stage, the most promising compound failed to interfere with bacterial growth when tested on a Gram-negative model organism, anticipating the need for further research efforts.

12.
ACS Infect Dis ; 7(2): 281-292, 2021 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-33513010

RESUMEN

Antibacterial adjuvants are of great significance, since they allow the therapeutic dose of conventional antibiotics to be lowered and reduce the insurgence of antibiotic resistance. Herein, we report that an O-acetylserine sulfhydrylase (OASS) inhibitor can be used as a colistin adjuvant to treat infections caused by Gram-positive and Gram-negative pathogens. A compound that binds OASS with a nM dissociation constant was tested as an adjuvant of colistin against six critical pathogens responsible for infections spreading worldwide, Escherichia coli, Salmonella enterica serovar Typhimurium, Klebisiella pneumoniae, Staphylococcus aureus, methicillin-resistant Staphylococcus aureus, and Staphylococcus pseudintermedius. The compound showed promising synergistic or additive activities against all of them. Knockout experiments confirmed the intracellular target engagement supporting the proposed mechanism of action. Moreover, compound toxicity was evaluated by means of its hemolytic activity against sheep defibrinated blood cells, showing a good safety profile. The 3D structure of the compound in complex with OASS was determined at 1.2 Å resolution by macromolecular crystallography, providing for the first time structural insights about the nature of the interaction between the enzyme and this class of competitive inhibitors. Our results provide a robust proof of principle supporting OASS as a potential nonessential antibacterial target to develop a new class of adjuvants and the structural basis for further structure-activity relationship studies.


Asunto(s)
Cisteína Sintasa , Staphylococcus aureus Resistente a Meticilina , Animales , Ácidos Carboxílicos , Colistina/farmacología , Ciclopropanos , Ovinos , Staphylococcus
13.
ACS Med Chem Lett ; 11(5): 790-797, 2020 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-32435386

RESUMEN

In ϒ-proteobacteria and Actinomycetales, cysteine biosynthetic enzymes are indispensable during persistence and become dispensable during growth or acute infection. The biosynthetic machinery required to convert inorganic sulfur into cysteine is absent in mammals; therefore, it is a suitable drug target. We searched for inhibitors of Salmonella serine acetyltransferase (SAT), the enzyme that catalyzes the rate-limiting step of l-cysteine biosynthesis. The virtual screening of three ChemDiv focused libraries containing 91 243 compounds was performed to identify potential SAT inhibitors. Scaffold similarity and the analysis of the overall physicochemical properties allowed the selection of 73 compounds that were purchased and evaluated on the recombinant enzyme. Six compounds displaying an IC50 <100 µM were identified via an indirect assay using Ellman's reagent and then tested on a Gram-negative model organism, with one of them being able to interfere with bacterial growth via SAT inhibition.

14.
FEBS Lett ; 591(9): 1212-1224, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28337759

RESUMEN

In bacteria and plants, serine acetyltransferase (CysE) and O-acetylserine sulfhydrylase-A sulfhydrylase (CysK) collaborate to synthesize l-Cys from l-Ser. CysE and CysK bind one another with high affinity to form the cysteine synthase complex (CSC). We demonstrate that bacterial CysE is activated when bound to CysK. CysE activation results from the release of substrate inhibition, with the Ki for l-Ser increasing from 4 mm for free CysE to 16 mm for the CSC. Feedback inhibition of CysE by l-Cys is also relieved in the bacterial CSC. These findings suggest that the CysE active site is allosterically altered by CysK to alleviate substrate and feedback inhibition in the context of the CSC.


Asunto(s)
Cisteína Sintasa/metabolismo , Cisteína/metabolismo , Proteínas de Escherichia coli/metabolismo , Serina O-Acetiltransferasa/metabolismo , Regulación Alostérica , Biocatálisis , Dominio Catalítico , Activación Enzimática , Retroalimentación Fisiológica , Cinética , Unión Proteica , Espectrometría de Fluorescencia , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA