Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Hum Genet ; 143(5): 667-681, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38578438

RESUMEN

CLCN4-related disorder is a rare X-linked neurodevelopmental condition with a pathogenic mechanism yet to be elucidated. CLCN4 encodes the vesicular 2Cl-/H+ exchanger ClC-4, and CLCN4 pathogenic variants frequently result in altered ClC-4 transport activity. The precise cellular and molecular function of ClC-4 remains unknown; however, together with ClC-3, ClC-4 is thought to have a role in the ion homeostasis of endosomes and intracellular trafficking. We reviewed our research database for patients with CLCN4 variants and epilepsy, and performed thorough phenotyping. We examined the functional properties of the variants in mammalian cells using patch-clamp electrophysiology, protein biochemistry, and confocal fluorescence microscopy. Three male patients with developmental and epileptic encephalopathy were identified, with differing phenotypes. Patients #1 and #2 had normal growth parameters and normal-appearing brains on MRI, while patient #3 had microcephaly, microsomia, complete agenesis of the corpus callosum and cerebellar and brainstem hypoplasia. The p.(Gly342Arg) variant of patient #1 significantly impaired ClC-4's heterodimerization capability with ClC-3 and suppressed anion currents. The p.(Ile549Leu) variant of patient #2 and p.(Asp89Asn) variant of patient #3 both shift the voltage dependency of transport activation by 20 mV to more hyperpolarizing potentials, relative to the wild-type, with p.(Asp89Asn) favouring higher transport activity. We concluded that p.(Gly342Arg) carried by patient #1 and the p.(Ile549Leu) expressed by patient #2 impair ClC-4 transport function, while the p.(Asp89Asn) variant results in a gain-of-transport function; all three variants result in epilepsy and global developmental impairment, but with differences in epilepsy presentation, growth parameters, and presence or absence of brain malformations.


Asunto(s)
Canales de Cloruro , Epilepsia , Estudios de Asociación Genética , Humanos , Canales de Cloruro/genética , Canales de Cloruro/metabolismo , Masculino , Epilepsia/genética , Preescolar , Niño , Fenotipo , Lactante , Mutación
2.
J Neurosci ; 42(15): 3080-3095, 2022 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-35241492

RESUMEN

ClC-3, ClC-4, and ClC-5 are electrogenic chloride/proton exchangers that can be found in endosomal compartments of mammalian cells. Although the association with genetic diseases and the severe phenotype of knock-out animals illustrate their physiological importance, the cellular functions of these proteins have remained insufficiently understood. We here study the role of two Clcn3 splice variants, ClC-3b and ClC-3c, in granular exocytosis and catecholamine accumulation of adrenal chromaffin cells using a combination of high-resolution capacitance measurements, amperometry, protein expression/gene knock out/down, rescue experiments, and confocal microscopy. We demonstrate that ClC-3c resides in immature as well as in mature secretory granules, where it regulates catecholamine accumulation and contributes to the establishment of the readily releasable pool of secretory vesicles. The lysosomal splice variant ClC-3b contributes to vesicle priming only with low efficiency and leaves the vesicular catecholamine content unaltered. The related Cl-/H+ antiporter ClC-5 undergoes age-dependent downregulation in wild-type conditions. Its upregulation in Clcn3-/- cells partially rescues the exocytotic mutant defect. Our study demonstrates how different CLC transporters with similar transport functions, but distinct localizations can contribute to vesicle functions in the regulated secretory pathway of granule secretion in chromaffin cells.SIGNIFICANCE STATEMENT Cl-/H+ exchangers are expressed along the endosomal/lysosomal system of mammalian cells; however, their exact subcellular functions have remained insufficiently understood. We used chromaffin cells, a system extensively used to understand presynaptic mechanisms of synaptic transmission, to define the role of CLC exchangers in neurosecretion. Disruption of ClC-3 impairs catecholamine accumulation and secretory vesicle priming. There are multiple ClC-3 splice variants, and only expression of one, ClC-3c, in double Cl-/H+ exchanger-deficient cells fully rescues the WT phenotype. Another splice variant, ClC-3b, is present in lysosomes and is not necessary for catecholamine secretion. The distinct functions of ClC-3c and ClC-3b illustrate the impact of expressing multiple CLC transporters with similar transport functions and separate localizations in different endosomal compartments.


Asunto(s)
Células Cromafines , Protones , Animales , Catecolaminas/metabolismo , Cloruros/metabolismo , Células Cromafines/metabolismo , Exocitosis/fisiología , Mamíferos , Ratones , Ratones Noqueados , Vesículas Secretoras/metabolismo
3.
EMBO J ; 38(19): e101468, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31506973

RESUMEN

Excitatory amino acid transporters (EAATs) mediate glial and neuronal glutamate uptake to terminate synaptic transmission and to ensure low resting glutamate concentrations. Effective glutamate uptake is achieved by cotransport with 3 Na+ and 1 H+ , in exchange with 1 K+ . The underlying principles of this complex transport stoichiometry remain poorly understood. We use molecular dynamics simulations and electrophysiological experiments to elucidate how mammalian EAATs harness K+ gradients, unlike their K+ -independent prokaryotic homologues. Glutamate transport is achieved via elevator-like translocation of the transport domain. In EAATs, glutamate-free re-translocation is prevented by an external gate remaining open until K+  binding closes and locks the gate. Prokaryotic GltPh contains the same K+ -binding site, but the gate can close without K+ . Our study provides a comprehensive description of K+ -dependent glutamate transport and reveals a hitherto unknown allosteric coupling mechanism that permits adaptions of the transport stoichiometry without affecting ion or substrate binding.


Asunto(s)
Proteínas de Transporte de Glutamato en la Membrana Plasmática/química , Proteínas de Transporte de Glutamato en la Membrana Plasmática/metabolismo , Potasio/metabolismo , Regulación Alostérica , Transporte Biológico , Células HEK293 , Humanos , Modelos Moleculares , Simulación de Dinámica Molecular , Conformación Proteica , Transmisión Sináptica
4.
Epilepsia ; 63(2): 388-401, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34961934

RESUMEN

OBJECTIVE: Mutations in the gene solute carrier family member 1A2 (SLC1A2) encoding the excitatory amino acid transporter 2 (EAAT2) are associated with severe forms of epileptic encephalopathy. EAAT2 is expressed in glial cells and presynaptic nerve terminals and represents the main l-glutamate uptake carrier in the mammalian brain. It does not only function as a secondary active glutamate transporter, but also as an anion channel. How naturally occurring mutations affect these two transport functions of EAAT2 and how such alterations cause epilepsy is insufficiently understood. METHODS: Here we studied the functional consequences of three disease-associated mutations, which predict amino acid exchanges p.Gly82Arg (G82R), p.Leu85Pro (L85P), and p.Pro289Arg (P289R), by heterologous expression in mammalian cells, biochemistry, confocal imaging, and whole-cell patch-clamp recordings of EAAT2 l-glutamate transport and anion current. RESULTS: G82R and L85P exchange amino acid residues that contribute to the formation of the EAAT anion pore. They enlarge the pore diameter sufficiently to permit the passage of l-glutamate and thus function as l-glutamate efflux pathways. The mutation P289R decreases l-glutamate uptake, but increases anion currents despite a lower membrane expression. SIGNIFICANCE: l-glutamate permeability of the EAAT anion pore is an unexpected functional consequence of naturally occurring single amino acid substitutions. l-glutamate efflux through mutant EAAT2 anion channels will cause glutamate excitotoxicity and neuronal hyperexcitability in affected patients. Antagonists that selectively suppress the EAAT anion channel function could serve as therapeutic agents in the future.


Asunto(s)
Encefalopatías , Transportador 2 de Aminoácidos Excitadores , Aminoácidos/metabolismo , Animales , Aniones/metabolismo , Transportador 2 de Aminoácidos Excitadores/química , Transportador 2 de Aminoácidos Excitadores/genética , Transportador 2 de Aminoácidos Excitadores/metabolismo , Ácido Glutámico/genética , Ácido Glutámico/metabolismo , Humanos , Mamíferos/metabolismo , Mutación/genética
5.
Phys Chem Chem Phys ; 24(17): 9964-9977, 2022 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-35445675

RESUMEN

Gating of the voltage-gated proton channel HV1 is strongly controlled by pH. There is evidence that this involves the sidechains of titratable amino acids that change their protonation state with changes of the pH. Despite experimental investigations to identify the amino acids involved in pH sensing only few progress has been made, including one histidine at the cytoplasmic side of the channel that is involved in sensing cellular pH. We have used constant pH molecular dynamics simulations in symmetrical and asymmetrical pH conditions across the membrane to investigate the pH- and ΔpH-dependent gating of the human HV1 channel. Therefore, the pKa of every titratable amino acids has been assessed in single simulations. Our simulations captured initial conformational changes between a deactivated and an activated state of the channel induced solely by changes of the pH. The pH-dependent gating is accompanied by an outward displacement of the three S4 voltage sensing arginines that moves the second arginine past the hydrophobic gasket (HG) which separates the inner and outer pores of the channel. HV1 activation, when outer pH increases, involves amino acids at the extracellular entrance of the channel that extend the network of interactions from the external solution down to the HG. Whereas, amino acids at the cytoplasmic entrance of the channel are involved in activation, when inner pH decreases, and in a network of interactions that extend from the cytoplasm up to the HG.


Asunto(s)
Activación del Canal Iónico , Protones , Aminoácidos , Humanos , Concentración de Iones de Hidrógeno , Activación del Canal Iónico/fisiología , Canales Iónicos/química
6.
J Biol Chem ; 295(44): 14936-14947, 2020 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-32820048

RESUMEN

Excitatory amino acid transporters (EAATs) are prototypical dual function proteins that function as coupled glutamate/Na+/H+/K+ transporters and as anion-selective channels. Both transport functions are intimately intertwined at the structural level: Secondary active glutamate transport is based on elevator-like movements of the mobile transport domain across the membrane, and the lateral movement of this domain results in anion channel opening. This particular anion channel gating mechanism predicts the existence of mutant transporters with changed anion channel properties, but without alteration in glutamate transport. We here report that the L46P mutation in the human EAAT2 transporter fulfills this prediction. L46 is a pore-forming residue of the EAAT2 anion channels at the cytoplasmic entrance into the ion conduction pathway. In whole-cell patch clamp recordings, we observed larger macroscopic anion current amplitudes for L46P than for WT EAAT2. Rapid l-glutamate application under forward transport conditions demonstrated that L46P does not reduce the transport rate of individual transporters. In contrast, changes in selectivity made gluconate permeant in L46P EAAT2, and nonstationary noise analysis revealed slightly increased unitary current amplitudes in mutant EAAT2 anion channels. We used unitary current amplitudes and individual transport rates to quantify absolute open probabilities of EAAT2 anion channels from ratios of anion currents by glutamate uptake currents. This analysis revealed up to 7-fold increased absolute open probability of L46P EAAT2 anion channels. Our results reveal an important determinant of the diameter of EAAT2 anion pore and demonstrate the existence of anion channel gating processes outside the EAAT uptake cycle.


Asunto(s)
Transportador 2 de Aminoácidos Excitadores/metabolismo , Ácido Glutámico/metabolismo , Mutación Puntual , Transporte Biológico , Transportador 2 de Aminoácidos Excitadores/química , Humanos , Técnicas de Placa-Clamp , Probabilidad
7.
BMC Biotechnol ; 20(1): 47, 2020 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-32854679

RESUMEN

BACKGROUND: Approximately 40% of prescribed drugs exert their activity via GTP-binding protein-coupled receptors (GPCRs). Once activated, these receptors cause transient changes in the concentration of second messengers, e.g., cyclic adenosine 3',5'-monophosphate (cAMP). Specific and efficacious genetically encoded biosensors have been developed to monitor cAMP fluctuations with high spatial and temporal resolution in living cells or tissue. A well characterized biosensor for cAMP is the Förster resonance energy transfer (FRET)-based Epac1-camps protein. Pharmacological characterization of newly developed ligands acting at GPCRs often includes numerical quantification of the second messenger amount that was produced. RESULTS: To quantify cellular cAMP concentrations, we bacterially over-expressed and purified Epac1-camps and applied the purified protein in a cell-free detection assay for cAMP in a multi-well format. We found that the biosensor can detect as little as 0.15 pmol of cAMP, and that the sensitivity is not impaired by non-physiological salt concentrations or pH values. Notably, the assay tolerated desiccation and storage of the protein without affecting Epac1-camps cyclic nucleotide sensitivity. CONCLUSIONS: We found that determination cAMP in lysates obtained from cell assays or tissue samples by purified Epac1-camps is a robust, fast, and sensitive assay suitable for routine and high throughput analyses.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia/métodos , Fluorescencia , Nucleótidos Cíclicos , Técnicas Biosensibles/métodos , Técnicas de Cultivo de Célula , Clonación Molecular , AMP Cíclico , Escherichia coli/genética , Factores de Intercambio de Guanina Nucleótido , Concentración de Iones de Hidrógeno , Nucleótidos Cíclicos/genética , Receptores Acoplados a Proteínas G , Proteínas Recombinantes
8.
J Biol Chem ; 292(46): 19055-19065, 2017 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-28972156

RESUMEN

ClC-4 is an intracellular Cl-/H+ exchanger that is highly expressed in the brain and whose dysfunction has been linked to intellectual disability and epilepsy. Here we studied the subcellular localization of human ClC-4 in heterologous expression systems. ClC-4 is retained in the endoplasmic reticulum (ER) upon overexpression in HEK293T cells. Co-expression with distinct ClC-3 splice variants targets ClC-4 to late endosome/lysosomes (ClC-3a and ClC-3b) or recycling endosome (ClC-3c). When expressed in cultured astrocytes, ClC-4 sorted to endocytic compartments in WT cells but was retained in the ER in Clcn3-/- cells. To understand the virtual absence of ER-localized ClC-4 in WT astrocytes, we performed association studies by high-resolution clear native gel electrophoresis. Although other CLC channels and transporters form stable dimers, ClC-4 was mostly observed as monomer, with ClC-3-ClC-4 heterodimers being more stable than ClC-4 homodimers. We conclude that unique oligomerization properties of ClC-4 permit regulated targeting of ClC-4 to various endosomal compartment systems via expression of different ClC-3 splice variants.


Asunto(s)
Canales de Cloruro/metabolismo , Endosomas/metabolismo , Canales de Cloruro/análisis , Retículo Endoplásmico/metabolismo , Células HEK293 , Humanos , Lisosomas/metabolismo , Mapas de Interacción de Proteínas , Multimerización de Proteína , Señales de Clasificación de Proteína , Transporte de Proteínas
9.
Langmuir ; 33(4): 1051-1059, 2017 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-28059515

RESUMEN

Direct delivery of proteins and peptides into living mammalian cells has been accomplished using phospholipid liposomes as carrier particles. Such liposomes are usually taken up via endocytosis where the main part of their cargo is degraded in lysosomes before reaching its destination. Here, fusogenic liposomes, a newly developed molecular carrier system, were used for protein delivery. When such liposomes were loaded with water-soluble proteins and brought into contact with mammalian cells, the liposomal membrane efficiently fused with the cellular plasma membrane delivering the liposomal content to the cytoplasm without degradation. To explore the key factors of proteofection processes, the complex formation of fusogenic liposomes and proteins of interest and the size and zeta potential of the formed fusogenic proteoliposoms were monitored. Intracellular protein delivery was analyzed using fluorescence microscopy and flow cytometry. Proteins such as EGFP, Dendra2, and R-phycoerythrin or peptides such as LifeAct-FITC and NTF2-AlexaFluor488 were successfully incorporated into mammalian cells with high efficiency. Moreover, correct functionality and faithful transport to binding sites were also proven for the imported proteins.


Asunto(s)
Citoplasma/metabolismo , Liposomas/química , Proteínas/metabolismo , Animales , Células CHO , Cricetinae , Cricetulus , Humanos , Péptidos/química , Péptidos/metabolismo , Transporte de Proteínas , Proteínas/química
10.
J Biol Chem ; 290(43): 25851-62, 2015 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-26342074

RESUMEN

ClC-3 is a member of the CLC family of anion channels and transporters, for which multiple functional properties and subcellular localizations have been reported. Since alternative splicing often results in proteins with diverse properties, we investigated to what extent alternative splicing might influence subcellular targeting and function of ClC-3. We identified three alternatively spliced ClC-3 isoforms, ClC-3a, ClC-3b, and ClC-3c, in mouse brain, with ClC-3c being the predominant splice variant. Whereas ClC-3a and ClC-3b are present in late endosomes/lysosomes, ClC-3c is targeted to recycling endosomes via a novel N-terminal isoleucine-proline (IP) motif. Surface membrane insertion of a fraction of ClC-3c transporters permitted electrophysiological characterization of this splice variant through whole-cell patch clamping on transfected mammalian cells. In contrast, neutralization of the N-terminal dileucine-like motifs was required for functional analysis of ClC-3a and ClC-3b. Heterologous expression of ClC-3a or ClC-3b carrying mutations in N-terminal dileucine motifs as well as WTClC-3c in HEK293T cells resulted in outwardly rectifying Cl(-) currents with significant capacitive current components. We conclude that alternative splicing of Clcn3 results in proteins with different subcellular localizations, but leaves the transport function of the proteins unaffected.


Asunto(s)
Empalme Alternativo , Canales de Cloruro/metabolismo , Neuronas/metabolismo , Fracciones Subcelulares/metabolismo , Secuencia de Aminoácidos , Animales , Transporte Biológico , Canales de Cloruro/química , Canales de Cloruro/genética , Ratones , Datos de Secuencia Molecular , Homología de Secuencia de Aminoácido
11.
J Biol Chem ; 290(51): 30406-16, 2015 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-26453302

RESUMEN

ClC-K chloride channels are crucial for auditory transduction and urine concentration. Mutations in CLCNKB, the gene encoding the renal chloride channel hClC-Kb, cause Bartter syndrome type III, a human genetic condition characterized by polyuria, hypokalemia, and alkalosis. In recent years, several Bartter syndrome-associated mutations have been described that result in truncations of the intracellular carboxyl terminus of hClC-Kb. We here used a combination of whole-cell patch clamp, confocal imaging, co-immunoprecipitation, and surface biotinylation to study the functional consequences of a frequent CLCNKB mutation that creates a premature stop codon at Trp-610. We found that W610X leaves the association of hClC-Kb and the accessory subunit barttin unaffected, but impairs its regulation by barttin. W610X attenuates hClC-Kb surface membrane insertion. Moreover, W610X results in hClC-Kb channel opening in the absence of barttin and prevents further barttin-mediated activation. To describe how the carboxyl terminus modifies the regulation by barttin we used V166E rClC-K1. V166E rClC-K1 is active without barttin and exhibits prominent, barttin-regulated voltage-dependent gating. Electrophysiological characterization of truncated V166E rClC-K1 demonstrated that the distal carboxyl terminus is necessary for slow cooperative gating. Since barttin modifies this particular gating process, channels lacking the distal carboxyl-terminal domain are no longer regulated by the accessory subunit. Our results demonstrate that the carboxyl terminus of hClC-Kb is not part of the binding site for barttin, but functionally modifies the interplay with barttin. The loss-of-activation of truncated hClC-Kb channels in heterologous expression systems fully explains the reduced basolateral chloride conductance in affected kidneys and the clinical symptoms of Bartter syndrome patients.


Asunto(s)
Canales de Cloruro/metabolismo , Activación del Canal Iónico , Animales , Sitios de Unión , Canales de Cloruro/genética , Codón sin Sentido/genética , Perros , Células HEK293 , Humanos , Hipopotasemia/genética , Hipopotasemia/metabolismo , Riñón/metabolismo , Riñón/patología , Células de Riñón Canino Madin Darby , Poliuria/genética , Poliuria/metabolismo , Poliuria/patología , Transporte de Proteínas/genética
12.
J Neurol ; 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38758281

RESUMEN

OBJECTIVES: CLCN4 variations have recently been identified as a genetic cause of X-linked neurodevelopmental disorders. This study aims to broaden the phenotypic spectrum of CLCN4-related condition and correlate it with functional consequences of CLCN4 variants. METHODS: We described 13 individuals with CLCN4-related neurodevelopmental disorder. We analyzed the functional consequence of the unreported variants using heterologous expression, biochemistry, confocal fluorescent microscopy, patch-clamp electrophysiology, and minigene splicing assay. RESULTS: We identified five novel (p.R41W, p.L348V, p.G480R, p.R603W, c.1576 + 5G > A) and three known (p.T203I, p.V275M, p.A555V) pathogenic CLCN4 variants in 13 Chinese patients. The p.V275M variant is found at high frequency and seen in four unrelated individuals. All had global developmental delay (GDD)/intellectual disability (ID). Seizures were present in eight individuals, and 62.5% of them developed refractory epilepsy. Five individuals without seizures showed moderate to severe GDD/ID. Developmental delay precedes seizure onset in most patients. The variants p.R41W, p.L348V, and p.R603W compromise the anion/exchange function of ClC-4. p.R41W partially impairs ClC-3/ClC-4 association. p.G480R reduces ClC-4 expression levels and impairs the heterodimerization with ClC-3. The c.1576 + 5G > A variant causes 22 bp deletion of exon 10. CONCLUSIONS: We further define and broaden the clinical and mutational spectrum of CLCN4-related neurodevelopmental conditions. The p.V275M variant may be a potential hotspot CLCN4 variant in Chinese patients. The five novel variants cause loss of function of ClC-4. Transport dysfunction, protein instability, intracellular trafficking defect, or failure of ClC-4 to oligomerize may contribute to the pathophysiological events leading to CLCN4-related neurodevelopmental disorder.

13.
FEBS J ; 290(13): 3436-3447, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36788452

RESUMEN

Recently, three proton channels (HV ) have been identified and characterized in Aplysia californica (AcHV 1-3). Focusing on AcHV 1 and AcHV 2, analysis of Transcriptome Shotgun Assembly and genomic databases of 91 molluscs identified HV homologous channels in other molluscs: channels homologous to AcHV 1 and to AcHV 2 were found in 90 species (56 full-length sequences) and in 33 species (18 full-length sequences), respectively. Here, we report the discovery of a fourth distinct proton channel family, HV 4. This new family has high homology to AcHV 1 and AcHV 2 and was identified only in bivalvian molluscs (13 species, 12 full-length sequences). Typically, these channels possess an extracellular S1-S2 loop of intermediate size (~ 20 amino acids) compared to the shorter loops of molluscan HV 1 channels (~ 13 amino acids) and the much larger loops of molluscan HV 2 channels (> 65 amino acids). The characteristic voltage-sensor motif in S4 possesses only two arginine residues with the common third arginine being replaced by a lysine. Moreover, HV 4 channels are much smaller with only around 200 amino acids in total length. The smallest functional channel found so far in nature (189 amino acids) is expressed in the pacific oyster Crassostrea gigas (CgHV 4) and might be considered an archetypical minimal proton channel. Functional expression and electrophysiological characterization demonstrated that CgHV 4 shares distinctive hallmarks of other investigated proton channels as high proton selectivity, slow activation, and pH- and voltage-regulated gating. This work is the first description of a HV 4 type channel, adding a new member to the recently expanded family of proton channels.


Asunto(s)
Canales Iónicos , Protones , Animales , Canales Iónicos/metabolismo , Activación del Canal Iónico/fisiología , Aminoácidos , Arginina , Moluscos/genética , Moluscos/metabolismo
14.
FEBS J ; 290(4): 1008-1026, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36062330

RESUMEN

Voltage-gated ion channels, whose first identified function was to generate action potentials, are divided into subfamilies with numerous members. The family of voltage-gated proton channels (HV ) is tiny. To date, all species found to express HV have exclusively one gene that codes for this unique ion channel. Here we report the discovery and characterization of three proton channel genes in the classical model system of neural plasticity, Aplysia californica. The three channels (AcHV 1, AcHV 2, and AcHV 3) are distributed throughout the whole animal. Patch-clamp analysis confirmed proton selectivity of these channels but they all differed markedly in gating. AcHV 1 gating resembled HV in mammalian cells where it is responsible for proton extrusion and charge compensation. AcHV 2 activates more negatively and conducts extensive inward proton current, properties likely to acidify the cytosol. AcHV 3, which differs from AcHV 1 and AcHV 2 in lacking the first arginine in the S4 helix, exhibits proton selective leak currents and weak voltage dependence. We report the expansion of the proton channel family, demonstrating for the first time the expression of three functionally distinct proton channels in a single species.


Asunto(s)
Activación del Canal Iónico , Protones , Animales , Activación del Canal Iónico/fisiología , Canales Iónicos/metabolismo , Arginina , Citosol/metabolismo , Mamíferos/metabolismo
15.
FEBS Open Bio ; 12(2): 523-537, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34986517

RESUMEN

Voltage-gated proton channels (HV 1) are expressed in eukaryotes, including basal hexapods and polyneopteran insects. However, currently, there is little known about HV 1 channels in insects. A characteristic aspartate (Asp) that functions as the proton selectivity filter (SF) and the RxWRxxR voltage-sensor motif are conserved structural elements in HV 1 channels. By analysing Transcriptome Shotgun Assembly (TSA) databases, we found 33 polyneopteran species meeting these structural requirements. Unexpectedly, an unusual natural variation Asp to glutamate (Glu) at SF was found in Phasmatodea and Mantophasmatodea. Additionally, we analysed the expression and function of HV 1 in the phasmatodean stick insect Extatosoma tiaratum (Et). EtHV 1 is strongly expressed in nervous tissue and shows pronounced inward proton conduction. This is the first study of a natural occurring Glu within the SF of a functional HV 1 and might be instrumental in uncovering the physiological function of HV 1 in insects.


Asunto(s)
Canales Iónicos , Protones , Animales , Insectos/metabolismo , Canales Iónicos/genética
16.
Front Mol Neurosci ; 15: 872407, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35721313

RESUMEN

Early/late endosomes, recycling endosomes, and lysosomes together form the endo-lysosomal recycling pathway. This system plays a crucial role in cell differentiation and survival, and dysregulation of the endo-lysosomal system appears to be important in the pathogenesis of neurodevelopmental and neurodegenerative diseases. Each endo-lysosomal compartment fulfils a specific function, which is supported by ion transporters and channels that modify ion concentrations and electrical gradients across endo-lysosomal membranes. CLC-type Cl-/H+ exchangers are a group of endo-lysosomal transporters that are assumed to regulate luminal acidification and chloride concentration in multiple endosomal compartments. Heterodimers of ClC-3 and ClC-4 localize to various internal membranes, from the endoplasmic reticulum and Golgi to recycling endosomes and late endosomes/lysosomes. The importance of ClC-4-mediated ion transport is illustrated by the association of naturally occurring CLCN4 mutations with epileptic encephalopathy, intellectual disability, and behavioral disorders in human patients. However, how these mutations affect the expression, subcellular localization, and function of ClC-4 is insufficiently understood. We here studied 12 CLCN4 variants that were identified in patients with X-linked intellectual disability and epilepsy and were already characterized to some extent in earlier work. We analyzed the consequences of these mutations on ClC-4 ion transport, subcellular trafficking, and heterodimerization with ClC-3 using heterologous expression in mammalian cells, biochemistry, confocal imaging, and whole-cell patch-clamp recordings. The mutations led to a variety of changes in ClC-4 function, ranging from gain/loss of function and impaired heterodimerization with ClC-3 to subtle impairments in transport functions. Our results suggest that even slight functional changes to the endosomal Cl-/H+ exchangers can cause serious neurological symptoms.

17.
Antioxidants (Basel) ; 11(11)2022 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-36421416

RESUMEN

S-Nitrosylation of cysteine residues is an important molecular mechanism for dynamic, post-translational regulation of several proteins, providing a ubiquitous redox regulation. Cys residues are present in several fluorescent proteins (FP), including members of the family of Aequorea victoria Green Fluorescent Protein (GFP)-derived FPs, where two highly conserved cysteine residues contribute to a favorable environment for the autocatalytic chromophore formation reaction. The effect of nitric oxide on the fluorescence properties of FPs has not been investigated thus far, despite the tremendous role FPs have played for 25 years as tools in cell biology. We have examined the response to nitric oxide of fluorescence emission by the blue-emitting fluorescent protein mTagBFP2. To our surprise, upon exposure to micromolar concentrations of nitric oxide, we observed a roughly 30% reduction in fluorescence quantum yield and lifetime. Recovery of fluorescence emission is observed after treatment with Na-dithionite. Experiments on related fluorescent proteins from different families show similar nitric oxide sensitivity of their fluorescence. We correlate the effect with S-nitrosylation of Cys residues. Mutation of Cys residues in mTagBFP2 removes its nitric oxide sensitivity. Similarly, fluorescent proteins devoid of Cys residues are insensitive to nitric oxide. We finally show that mTagBFP2 can sense exogenously generated nitric oxide when expressed in a living mammalian cell. We propose mTagBFP2 as the starting point for a new class of genetically encoded nitric oxide sensors based on fluorescence lifetime imaging.

18.
FEBS J ; 287(22): 4996-5018, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32160407

RESUMEN

The HV 1 voltage-gated proton (HV 1) channel is a key component of the cellular proton extrusion machinery and is pivotal for charge compensation during the respiratory burst of phagocytes. The best-described physiological inhibitor of HV 1 is Zn2+ . Externally applied ZnCl2 drastically reduces proton currents reportedly recorded in Homo sapiens, Rattus norvegicus, Mus musculus, Oryctolagus cuniculus, Rana esculenta, Helix aspersa, Ciona intestinalis, Coccolithus pelagicus, Emiliania huxleyi, Danio rerio, Helisoma trivolvis, and Lingulodinium polyedrum, but with considerable species variability. Here, we report the effects of Zn2+ and Cd2+ on HV 1 from Nicoletia phytophila, NpHV 1. We introduced mutations at potential Zn2+ coordination sites and measured Zn2+ inhibition in different extracellular pH, with Zn2+ concentrations up to 1000 µm. Zn2+ inhibition in NpHV 1 was quantified by the slowing of the activation time constant and a positive shift of the conductance-voltage curve. Replacing aspartate in the S3-S4 loop with histidine (D145H) enhanced both the slowing of activation kinetics and the shift in the voltage-conductance curve, such that Zn2+ inhibition closely resembled that of the human channel. Histidine is much more effective than aspartate in coordinating Zn2+ in the S3-S4 linker. A simple Hodgkin Huxley model of NpHV 1 suggests a decrease in the opening rate if it is inhibited by zinc or cadmium. Limiting slope measurements and high-resolution clear native gel electrophoresis (hrCNE) confirmed that NpHV 1 functions as a dimer. The data support the hypothesis that zinc is coordinated in between the dimer instead of the monomer. Zinc coordination sites may be potential targets for drug development.


Asunto(s)
Proteínas de Artrópodos/fisiología , Artrópodos/metabolismo , Activación del Canal Iónico/efectos de los fármacos , Canales Iónicos/fisiología , Zinc/farmacología , Animales , Proteínas de Artrópodos/genética , Proteínas de Artrópodos/metabolismo , Artrópodos/genética , Cadmio/farmacología , Línea Celular , Células HEK293 , Humanos , Concentración de Iones de Hidrógeno , Activación del Canal Iónico/genética , Activación del Canal Iónico/fisiología , Canales Iónicos/genética , Canales Iónicos/metabolismo , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/genética , Potenciales de la Membrana/fisiología , Mutación Missense , Técnicas de Placa-Clamp/métodos
19.
FEBS J ; 283(8): 1453-64, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26866814

RESUMEN

UNLABELLED: The voltage-gated proton channel 1 (HV 1) is an important component of the cellular proton extrusion machinery and is essential for charge compensation during the respiratory burst of phagocytes. HV 1 has been identified in a wide range of eukaryotes throughout the animal kingdom, with the exception of insects. Therefore, it has been proposed that insects do not possess an HV 1 channel. In the present study, we report the existence of an HV 1-type proton channel in insects. We searched insect transcriptome shotgun assembly (TSA) sequence databases and found putative HV 1 orthologues in various polyneopteran insects. To confirm that these putative HV 1 orthologues were functional channels, we studied the HV 1 channel of Nicoletia phytophila (NpHV 1), an insect of the Zygentoma order, in more detail. NpHV 1 comprises 239 amino acids and is 33% identical to the human voltage-gated proton channel 1. Patch clamp measurements in a heterologous expression system showed proton selectivity, as well as pH- and voltage-dependent gating. Interestingly, NpHV 1 shows slightly enhanced pH-dependent gating compared to the human channel. Mutations in the first transmembrane segment at position 66 (Asp66), the presumed selectivity filter, lead to a loss of proton-selective conduction, confirming the importance of this aspartate residue in voltage-gated proton channels. DATABASE: Nucleotide sequence data have been deposited in the GenBank database under accession number KT780722.


Asunto(s)
Membrana Celular/metabolismo , Insectos/metabolismo , Activación del Canal Iónico/fisiología , Canales Iónicos/metabolismo , Potenciales de la Membrana/fisiología , Protones , Secuencia de Aminoácidos , Animales , Electrofisiología , Humanos , Insectos/clasificación , Datos de Secuencia Molecular , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA