RESUMEN
Physiologically relevant human skin models that include key skin cell types can be used for in vitro drug testing, skin pathology studies, or clinical applications such as skin grafts. However, there is still no golden standard for such a model. We investigated the potential of a recombinant function-alized spider silk protein, FN-silk, for the construction of a dermal, an epidermal, and a bilayered skin equivalent (BSE). Specifically, two formats of FN-silk (i.e., 3D network and nanomembrane) were evaluated. The 3D network was used as an elastic ECM-like support for the dermis, and the thin, permeable nanomembrane was used as a basement membrane to support the epidermal epi-thelium. Immunofluorescence microscopy and spatially resolved transcriptomics analysis demon-strated the secretion of key ECM components and the formation of microvascular-like structures. Furthermore, the epidermal layer exhibited clear stratification and the formation of a cornified layer, resulting in a tight physiologic epithelial barrier. Our findings indicate that the presented FN-silk-based skin models can be proposed as physiologically relevant standalone epidermal or dermal models, as well as a combined BSE.
RESUMEN
The Claustrum/dorsal endopiriform cortex complex (CLA) is an enigmatic brain region with extensive glutamatergic projections to multiple cortical areas. The transcription factor Nurr1 is highly expressed in the CLA, but its role in this region is not understood. By using conditional gene-targeted mice, we show that Nurr1 is a crucial regulator of CLA neuron identity. Although CLA neurons remain intact in the absence of Nurr1, the distinctive gene expression pattern in the CLA is abolished. CLA has been hypothesized to control hallucinations, but little is known of how the CLA responds to hallucinogens. After the deletion of Nurr1 in the CLA, both hallucinogen receptor expression and signaling are lost. Furthermore, functional ultrasound and Neuropixel electrophysiological recordings revealed that the hallucinogenic-receptor agonists' effects on functional connectivity between prefrontal and sensorimotor cortices are altered in Nurr1-ablated mice. Our findings suggest that Nurr1-targeted strategies provide additional avenues for functional studies of the CLA.
Asunto(s)
Claustro , Alucinógenos , Neuronas , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares , Animales , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , Ratones , Alucinógenos/farmacología , Claustro/metabolismo , Neuronas/metabolismo , Masculino , Ratones Noqueados , Ratones Endogámicos C57BL , Corteza Prefrontal/metabolismo , Corteza Prefrontal/fisiología , Corteza Sensoriomotora/metabolismo , Corteza Sensoriomotora/fisiologíaRESUMEN
Impairment of the central nervous system (CNS) poses a significant health risk for astronauts during long-duration space missions. In this study, we employed an innovative approach by integrating single-cell multiomics (transcriptomics and chromatin accessibility) with spatial transcriptomics to elucidate the impact of spaceflight on the mouse brain in female mice. Our comparative analysis between ground control and spaceflight-exposed animals revealed significant alterations in essential brain processes including neurogenesis, synaptogenesis and synaptic transmission, particularly affecting the cortex, hippocampus, striatum and neuroendocrine structures. Additionally, we observed astrocyte activation and signs of immune dysfunction. At the pathway level, some spaceflight-induced changes in the brain exhibit similarities with neurodegenerative disorders, marked by oxidative stress and protein misfolding. Our integrated spatial multiomics approach serves as a stepping stone towards understanding spaceflight-induced CNS impairments at the level of individual brain regions and cell types, and provides a basis for comparison in future spaceflight studies. For broader scientific impact, all datasets from this study are available through an interactive data portal, as well as the National Aeronautics and Space Administration (NASA) Open Science Data Repository (OSDR).
Asunto(s)
Encéfalo , Neuronas , Vuelo Espacial , Animales , Ratones , Femenino , Encéfalo/metabolismo , Encéfalo/patología , Neuronas/metabolismo , Transcriptoma , Neurogénesis , Análisis de la Célula Individual , Ratones Endogámicos C57BL , Transmisión Sináptica , Ingravidez/efectos adversos , Astrocitos/metabolismo , Estrés Oxidativo , Perfilación de la Expresión Génica , MultiómicaRESUMEN
Single-cell RNA sequencing (scRNA-seq) and spatially resolved transcriptomics (SRT) have experienced rapid development in recent years. The findings of spaceflight-based scRNA-seq and SRT investigations are likely to improve our understanding of life in space and our comprehension of gene expression in various cell systems and tissue dynamics. However, compared to their Earth-based counterparts, gene expression experiments conducted in spaceflight have not experienced the same pace of development. Out of the hundreds of spaceflight gene expression datasets available, only a few used scRNA-seq and SRT. In this perspective piece, we explore the growing importance of scRNA-seq and SRT in space biology and discuss the challenges and considerations relevant to robust experimental design to enable growth of these methods in the field.