Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cell ; 167(2): 382-396.e17, 2016 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-27693356

RESUMEN

The inflammasome is an intracellular signaling complex, which on recognition of pathogens and physiological aberration, drives activation of caspase-1, pyroptosis, and the release of the pro-inflammatory cytokines IL-1ß and IL-18. Bacterial ligands must secure entry into the cytoplasm to activate inflammasomes; however, the mechanisms by which concealed ligands are liberated in the cytoplasm have remained unclear. Here, we showed that the interferon-inducible protein IRGB10 is essential for activation of the DNA-sensing AIM2 inflammasome by Francisella novicida and contributed to the activation of the LPS-sensing caspase-11 and NLRP3 inflammasome by Gram-negative bacteria. IRGB10 directly targeted cytoplasmic bacteria through a mechanism requiring guanylate-binding proteins. Localization of IRGB10 to the bacterial cell membrane compromised bacterial structural integrity and mediated cytosolic release of ligands for recognition by inflammasome sensors. Overall, our results reveal IRGB10 as part of a conserved signaling hub at the interface between cell-autonomous immunity and innate immune sensing pathways.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Francisella/inmunología , GTP Fosfohidrolasas/metabolismo , Infecciones por Bacterias Gramnegativas/inmunología , Interacciones Huésped-Patógeno/inmunología , Inflamasomas/inmunología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Animales , Linfocitos B/inmunología , Caspasas/metabolismo , Caspasas Iniciadoras , Citosol/inmunología , Citosol/microbiología , GTP Fosfohidrolasas/genética , Infecciones por Bacterias Gramnegativas/microbiología , Inmunidad Celular , Inmunidad Innata , Inflamasomas/metabolismo , Ligandos , Ratones , Ratones Mutantes , Células Mieloides/inmunología , Linfocitos T/inmunología
2.
Immunity ; 44(1): 88-102, 2016 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-26795252

RESUMEN

The role of apoptosis inducing factor (AIF) in promoting cell death versus survival remains controversial. We report that the loss of AIF in fibroblasts led to mitochondrial electron transport chain defects and loss of proliferation that could be restored by ectopic expression of the yeast NADH dehydrogenase Ndi1. Aif-deficiency in T cells led to decreased peripheral T cell numbers and defective homeostatic proliferation, but thymic T cell development was unaffected. In contrast, Aif-deficient B cells developed and functioned normally. The difference in the dependency of T cells versus B cells on AIF for function and survival correlated with their metabolic requirements. Ectopic Ndi1 expression rescued homeostatic proliferation of Aif-deficient T cells. Despite its reported roles in cell death, fibroblasts, thymocytes and B cells lacking AIF underwent normal death. These studies suggest that the primary role of AIF relates to complex I function, with differential effects on T and B cells.


Asunto(s)
Factor Inductor de la Apoptosis/metabolismo , Linfocitos B/metabolismo , Mitocondrias/fisiología , Linfocitos T/metabolismo , Animales , Apoptosis , Respiración de la Célula/fisiología , Complejo I de Transporte de Electrón/metabolismo , Fibroblastos/metabolismo , Glucólisis/fisiología , Ratones , Ratones Noqueados , Ratones Mutantes
3.
Mol Cell ; 61(4): 589-601, 2016 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-26853145

RESUMEN

Necroptosis is a cell death pathway regulated by the receptor interacting protein kinase 3 (RIPK3) and the mixed lineage kinase domain-like (MLKL) pseudokinase. How MLKL executes plasma membrane rupture upon phosphorylation by RIPK3 remains controversial. Here, we characterize the hierarchical transduction of structural changes in MLKL that culminate in necroptosis. The MLKL brace, proximal to the N-terminal helix bundle (NB), is involved in oligomerization to facilitate plasma membrane targeting through the low-affinity binding of NB to phosphorylated inositol polar head groups of phosphatidylinositol phosphate (PIP) phospholipids. At the membrane, the NB undergoes a "rolling over" mechanism to expose additional higher-affinity PIP-binding sites responsible for robust association to the membrane and displacement of the brace from the NB. PI(4,5)P2 is the preferred PIP-binding partner. We investigate the specific association of MLKL with PIPs and subsequent structural changes during necroptosis.


Asunto(s)
Fibroblastos/citología , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas Quinasas/química , Proteínas Quinasas/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Animales , Apoptosis , Sitios de Unión , Línea Celular , Membrana Celular/metabolismo , Fibroblastos/metabolismo , Humanos , Ratones , Modelos Moleculares , Fosforilación , Proteínas Quinasas/genética , Multimerización de Proteína , Estructura Terciaria de Proteína , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética
4.
PLoS Pathog ; 16(3): e1008364, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32150572

RESUMEN

Innate immunity responds to pathogens by producing alarm signals and activating pathways that make host cells inhospitable for pathogen replication. The intracellular bacterium Burkholderia thailandensis invades the cytosol, hijacks host actin, and induces cell fusion to spread to adjacent cells, forming multinucleated giant cells (MNGCs) which promote bacterial replication. We show that type I interferon (IFN) restricts macrophage MNGC formation during B. thailandensis infection. Guanylate-binding proteins (GBPs) expressed downstream of type I IFN were required to restrict MNGC formation through inhibition of bacterial Arp2/3-dependent actin motility during infection. GTPase activity and the CAAX prenylation domain were required for GBP2 recruitment to B. thailandensis, which restricted bacterial actin polymerization required for MNGC formation. Consistent with the effects in in vitro macrophages, Gbp2-/-, Gbp5-/-, GbpChr3-KO mice were more susceptible to intranasal infection with B. thailandensis than wildtype mice. Our findings reveal that IFN and GBPs play a critical role in restricting cell-cell fusion and bacteria-induced pathology during infection.


Asunto(s)
Infecciones por Burkholderia/inmunología , Burkholderia/inmunología , Proteínas de Unión al GTP/inmunología , Células Gigantes/inmunología , Macrófagos/inmunología , Enfermedades Nasales/inmunología , Prenilación de Proteína/inmunología , Animales , Infecciones por Burkholderia/genética , Infecciones por Burkholderia/patología , Fusión Celular , Proteínas de Unión al GTP/genética , Células Gigantes/microbiología , Células Gigantes/patología , Interferón Tipo I/genética , Interferón Tipo I/inmunología , Macrófagos/microbiología , Macrófagos/patología , Ratones , Ratones Noqueados , Enfermedades Nasales/genética , Enfermedades Nasales/microbiología , Enfermedades Nasales/patología
5.
Genes Dev ; 27(12): 1351-64, 2013 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-23788622

RESUMEN

MCL-1 is an essential BCL-2 family member that promotes the survival of multiple cellular lineages, but its role in cardiac muscle has remained unclear. Here, we report that cardiac-specific ablation of Mcl-1 results in a rapidly fatal, dilated cardiomyopathy manifested by a loss of cardiac contractility, abnormal mitochondria ultrastructure, and defective mitochondrial respiration. Strikingly, genetic ablation of both proapoptotic effectors (Bax and Bak) could largely rescue the lethality and impaired cardiac function induced by Mcl-1 deletion. However, while the overt consequences of Mcl-1 loss were obviated by combining with the loss of Bax and Bak, mitochondria from the Mcl-1-, Bax-, and Bak-deficient hearts still revealed mitochondrial ultrastructural abnormalities and displayed deficient mitochondrial respiration. Together, these data indicate that merely blocking cell death is insufficient to completely overcome the need for MCL-1 function in cardiomyocytes and suggest that in cardiac muscle, MCL-1 also facilitates normal mitochondrial function. These findings are important, as specific MCL-1-inhibiting therapeutics are being proposed to treat cancer cells and may result in unexpected cardiac toxicity.


Asunto(s)
Proteínas Proto-Oncogénicas c-bcl-2/genética , Animales , Respiración de la Célula/genética , Supervivencia Celular/genética , Insuficiencia Cardíaca/genética , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Microscopía Electrónica de Transmisión , Mitocondrias/genética , Músculo Esquelético/citología , Músculo Esquelético/patología , Proteína 1 de la Secuencia de Leucemia de Células Mieloides , Miocardio/citología , Miocardio/patología , Consumo de Oxígeno/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Eliminación de Secuencia , Proteína Destructora del Antagonista Homólogo bcl-2/genética , Proteína X Asociada a bcl-2/genética
6.
Exp Cell Res ; 379(1): 55-64, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30922922

RESUMEN

Metabolic studies of human pluripotent stem cells (hPSCs) have focused on how the cells produce energy through the catabolic pathway. The less-studied anabolic pathway, by which hPSCs expend energy in the form of adenosine triphosphate (ATP), is not yet fully understood. Compared to fully differentiated somatic cells, hPSCs undergo significant changes not only in their gene expression but also in their production and/or expenditure of ATP. Here, we investigate how hPSCs tightly control their energy homeostasis by studying the main energy-consuming process, mRNA translation. In addition, change of subcellular organelles regarding energy homeostasis has been investigated. Lysosomes are organelles that play an important role in the elimination of unnecessary cellular materials by digestion and in the recycling system of the cell. We have found that hPSCs control their lysosome numbers in part by regulating lysosomal gene/protein expression. Thus, because the levels of mRNA translation rate are lower in hPSCs than in somatic cells, not only the global translational machinery but also the lysosomal recycling machinery is suppressed in hPSCs. Overall, the results of our study suggest that hPSCs reprogram gene expression and signaling to regulate energy-consuming processes and energy-controlling organelles.


Asunto(s)
Metabolismo Energético/fisiología , Orgánulos/metabolismo , Células Madre Pluripotentes/metabolismo , Adenosina Trifosfato/metabolismo , Diferenciación Celular/fisiología , Células Cultivadas , Expresión Génica/fisiología , Homeostasis/fisiología , Humanos , Lisosomas/metabolismo , Biosíntesis de Proteínas/fisiología , ARN Mensajero/metabolismo , Transducción de Señal/fisiología
7.
PLoS Genet ; 11(9): e1005500, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26352669

RESUMEN

Nature's fastest motors are the cochlear outer hair cells (OHCs). These sensory cells use a membrane protein, Slc26a5 (prestin), to generate mechanical force at high frequencies, which is essential for explaining the exquisite hearing sensitivity of mammalian ears. Previous studies suggest that Slc26a5 continuously diffuses within the membrane, but how can a freely moving motor protein effectively convey forces critical for hearing? To provide direct evidence in OHCs for freely moving Slc26a5 molecules, we created a knockin mouse where Slc26a5 is fused with YFP. These mice and four other strains expressing fluorescently labeled membrane proteins were used to examine their lateral diffusion in the OHC lateral wall. All five proteins showed minimal diffusion, but did move after pharmacological disruption of membrane-associated structures with a cholesterol-depleting agent and salicylate. Thus, our results demonstrate that OHC lateral wall structure constrains the mobility of plasma membrane proteins and that the integrity of such membrane-associated structures are critical for Slc26a5's active and structural roles. The structural constraint of membrane proteins may exemplify convergent evolution of cellular motors across species. Our findings also suggest a possible mechanism for disorders of cholesterol metabolism with hearing loss such as Niemann-Pick Type C diseases.


Asunto(s)
Células Ciliadas Auditivas Externas/metabolismo , Proteínas Motoras Moleculares/metabolismo , Animales , Proteínas Bacterianas/genética , Proteínas Luminiscentes/genética , Ratones , Ratones Transgénicos , Rodopsina/metabolismo , Ácido Salicílico/farmacología , beta-Ciclodextrinas/farmacología
8.
Mol Genet Metab ; 120(4): 350-362, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28189602

RESUMEN

Coenzyme A (CoA) is a cofactor that is central to energy metabolism and CoA synthesis is controlled by the enzyme pantothenate kinase (PanK). A transgenic mouse strain expressing human PANK2 was derived to determine the physiological impact of PANK overexpression and elevated CoA levels. The Tg(PANK2) mice expressed high levels of the transgene in skeletal muscle and heart; however, CoA was substantially elevated only in skeletal muscle, possibly associated with the comparatively low endogenous levels of acetyl-CoA, a potent feedback inhibitor of PANK2. Tg(PANK2) mice were smaller, had less skeletal muscle mass and displayed significantly impaired exercise tolerance and grip strength. Skeletal myofibers were characterized by centralized nuclei and aberrant mitochondria. Both the content of fully assembled complex I of the electron transport chain and ATP levels were reduced, while markers of oxidative stress were elevated in Tg(PANK2) skeletal muscle. These abnormalities were not detected in the Tg(PANK2) heart muscle, with the exception of spotty loss of cristae organization in the mitochondria. The data demonstrate that excessively high CoA may be detrimental to skeletal muscle function.


Asunto(s)
Coenzima A/metabolismo , Fuerza de la Mano/fisiología , Mitocondrias/metabolismo , Músculo Esquelético/fisiología , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Animales , Complejo I de Transporte de Electrón/metabolismo , Humanos , Ratones , Ratones Transgénicos , Músculo Esquelético/metabolismo , Miocardio/metabolismo , Estrés Oxidativo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Regulación hacia Arriba
9.
Blood ; 126(20): 2307-19, 2015 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-26405223

RESUMEN

Controlling the activation of platelets is a key strategy to mitigate cardiovascular disease. Previous studies have suggested that the ATP-binding cassette (ABC) transporter, ABCC4, functions in platelet-dense granules. Using plasma membrane biotinylation and super-resolution microscopy, we demonstrate that ABCC4 is primarily expressed on the plasma membrane of both mouse and human platelets. Platelets lacking ABCC4 have unchanged dense-granule function, number, and volume, but harbor a selective impairment in collagen-induced aggregation. Accordingly, Abcc4 knockout (KO) platelet attachment to a collagen substratum was also faulty and associated with elevated intracellular cyclic AMP (cAMP) and reduced plasma membrane localization of the major collagen receptor, GPVI. In the ferric-chloride vasculature injury model, Abcc4 KO mice exhibited markedly impaired thrombus formation. The attenuation of platelet aggregation by the phosphodiesterase inhibitor EHNA (a non-ABCC4 substrate), when combined with Abcc4 deficiency, illustrated a crucial functional interaction between phosphodiesterases and ABCC4. This was extended in vivo where EHNA dramatically prolonged the bleeding time, but only in Abcc4 KO mice. Further, we demonstrated in human platelets that ABCC4 inhibition, when coupled with phosphodiesterase inhibition, strongly impaired platelet aggregation. These findings have important clinical implications because they directly highlight an important relationship between ABCC4 transporter function and phosphodiesterases in accounting for the cAMP-directed activity of antithrombotic agents.


Asunto(s)
Plaquetas/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Agregación Plaquetaria , Adenina/análogos & derivados , Adenina/farmacología , Animales , Plaquetas/patología , AMP Cíclico/genética , AMP Cíclico/metabolismo , Humanos , Ratones , Ratones Noqueados , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Inhibidores de Fosfodiesterasa/farmacología , Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/metabolismo , Trombosis/genética , Trombosis/metabolismo , Trombosis/patología
11.
Proc Natl Acad Sci U S A ; 108(52): 21111-6, 2011 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-22160703

RESUMEN

Neuronal differentiation with respect to the acquisition of synaptic competence needs to be regulated precisely during neurogenesis to ensure proper formation of circuits at the right place and time in development. This regulation is particularly important for synaptic triads among photoreceptors, horizontal cells (HCs), and bipolar cells in the retina, because HCs are among the first cell types produced during development, and bipolar cells are among the last. HCs undergo a dramatic transition from vertically oriented neurites that form columnar arbors to overlapping laminar dendritic arbors with differentiation. However, how this process is regulated and coordinated with differentiation of photoreceptors and bipolar cells remains unknown. Previous studies have suggested that the retinoblastoma (Rb) tumor suppressor gene may play a role in horizontal cell differentiation and synaptogenesis. By combining genetic mosaic analysis of individual synaptic triads with neuroanatomic analyses and multiphoton live imaging of developing HCs, we found that Rb plays a cell-autonomous role in the reorganization of horizontal cell neurites as they differentiate. Aberrant vertical processes in Rb-deficient HCs form ectopic synapses with rods in the outer nuclear layer but lack bipolar dendrites. Although previous reports indicate that photoreceptor abnormalities can trigger formation of ectopic synapses, our studies now demonstrate that defects in a postsynaptic partner contribute to the formation of ectopic photoreceptor synapses in the mammalian retina.


Asunto(s)
Diferenciación Celular/fisiología , Dendritas/fisiología , Neurogénesis/fisiología , Células Horizontales de la Retina/citología , Proteína de Retinoblastoma/metabolismo , Sinapsis/fisiología , Animales , Ratones , Microscopía Confocal , Microscopía Electrónica de Transmisión , Proteína de Retinoblastoma/genética
12.
Proc Natl Acad Sci U S A ; 106(16): 6685-90, 2009 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-19346468

RESUMEN

It was previously reported that the ciliary epithelium (CE) of the mammalian eye contains a rare population of cells that could produce clonogenic self-renewing pigmented spheres in culture. Based on their ability to up-regulate genes found in retinal neurons, it was concluded that these sphere-forming cells were retinal stem cells. This conclusion raised the possibility that CE-derived retinal stem cells could help to restore vision in the millions of people worldwide who suffer from blindness associated with retinal degeneration. We report here that human and mouse CE-derived spheres are made up of proliferating pigmented ciliary epithelial cells rather than retinal stem cells. All of the cells in the CE-derived spheres, including the proliferating cells, had molecular, cellular, and morphological features of differentiated pigmented CE cells. These differentiated cells ectopically expressed nestin when exposed to growth factors and low levels of pan-neuronal markers such as beta-III-tubulin. Although the cells aberrantly expressed neuronal markers, they retained their pigmented CE cell morphology and failed to differentiate into retinal neurons in vitro or in vivo. Our results provide an example of a differentiated cell type that can form clonogenic spheres in culture, self-renew, express progenitor cell markers, and initiate neuronal differentiation that is not a stem or progenitor cell. More importantly, our findings highlight the importance of shifting the focus away from studies on CE-derived spheres for cell-based therapies to restore vision in the degenerating retina and improving techniques for using ES cells or retinal precursor cells.


Asunto(s)
Cuerpo Ciliar/citología , Células Epiteliales/citología , Pigmentación , Retina/citología , Células Madre/citología , Adulto , Animales , Biomarcadores/metabolismo , Diferenciación Celular , Proliferación Celular , Cuerpo Ciliar/ultraestructura , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratas , Ratas Sprague-Dawley
13.
Nat Commun ; 11(1): 5312, 2020 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-33082319

RESUMEN

Evidence is lacking as to how developing neurons integrate mitogenic signals with microenvironment cues to control proliferation and differentiation. We determine that the Siah2 E3 ubiquitin ligase functions in a coincidence detection circuit linking responses to the Shh mitogen and the extracellular matrix to control cerebellar granule neurons (CGN) GZ occupancy. We show that Shh signaling maintains Siah2 expression in CGN progenitors (GNPs) in a Ras/Mapk-dependent manner. Siah2 supports ciliogenesis in a feed-forward fashion by restraining cilium disassembly. Efforts to identify sources of the Ras/Mapk signaling led us to discover that GNPs respond to laminin, but not vitronectin, in the GZ microenvironment via integrin ß1 receptors, which engages the Ras/Mapk cascade with Shh, and that this niche interaction is essential for promoting GNP ciliogenesis. As GNPs leave the GZ, differentiation is driven by changing extracellular cues that diminish Siah2-activity leading to primary cilia shortening and attenuation of the mitogenic response.


Asunto(s)
Cilios/metabolismo , Matriz Extracelular/metabolismo , Neuronas/citología , Proteínas Nucleares/metabolismo , Células Madre/citología , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Diferenciación Celular , Línea Celular Tumoral , Cerebelo/citología , Cerebelo/metabolismo , Cilios/genética , Matriz Extracelular/genética , Humanos , Ratones , Ratones Endogámicos C57BL , Neuronas/metabolismo , Proteínas Nucleares/genética , Transducción de Señal , Células Madre/metabolismo , Ubiquitina-Proteína Ligasas/genética
14.
Cancer Res ; 67(6): 2701-11, 2007 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-17363591

RESUMEN

Retinoblastomas initiate in the developing retina in utero and are diagnosed during the first few years of life. We have recently generated a series of knockout mouse models of retinoblastoma that recapitulate the timing, location, and progression of human retinoblastoma. One of the most important benefits of these preclinical models is that we can study the earliest stages of tumor initiation and expansion. This is not possible in human retinoblastoma because tumors initiate in utero and are not diagnosed until they are at an advanced stage. We found that mouse retinoblastoma cells exhibit a surprising degree of differentiation, which has not been previously reported for any neural tumor. Early-stage mouse retinoblastoma cells express proteins found normally in retinal plexiform layers. They also extend neurites and form synapses. All of these features, which were characterized by immunostaining, Golgi-Cox staining, scanning electron microscopy, and transmission electron microscopy, suggest that mouse retinoblastoma cells resemble amacrine/horizontal cells from the retina. As late-stage retinoblastoma cells expand and invade the surrounding tissue, they lose their differentiated morphology and become indistinguishable from human retinoblastomas. Taken together, our data suggest that neuronal differentiation is a hallmark of early-stage retinoblastoma and is lost as cells become more aggressive and invasive. We also show that rosette formation is not a hallmark of retinoblastoma differentiation, as previously believed. Instead, rosette formation reflects extensive cell-cell contacts between retinoblastoma cells in both early-stage (differentiated) and late-stage (dedifferentiated) tumors.


Asunto(s)
Neuronas/patología , Retinoblastoma/patología , Sinapsis/patología , Animales , Cámara Anterior/patología , Diferenciación Celular/fisiología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Humanos , Ratones , Ratones Noqueados , Invasividad Neoplásica , Neuritas/patología , Neuronas/ultraestructura , Retina/patología , Retinoblastoma/genética , Retinoblastoma/ultraestructura , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Sinapsis/ultraestructura , Cuerpo Vítreo/patología
15.
Cell Rep ; 28(9): 2275-2287.e5, 2019 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-31461645

RESUMEN

Necroptosis is a form of programmed cell death that is defined by activation of the kinase RIPK3 and subsequent cell membrane permeabilization by the effector MLKL. RIPK3 activation can also promote immune responses via production of cytokines and chemokines. How active cytokine production is coordinated with the terminal process of necroptosis is unclear. Here, we report that cytokine production continues within necroptotic cells even after they have lost cell membrane integrity and irreversibly committed to death. This continued cytokine production is dependent on mRNA translation and requires maintenance of endoplasmic reticulum integrity that remains after plasma membrane integrity is lost. The continued translation of cytokines by cellular corpses contributes to necroptotic cell uptake by innate immune cells and priming of adaptive immune responses to antigens associated with necroptotic corpses. These findings imply that cell death and production of inflammatory mediators are coordinated to optimize the immunogenicity of necroptotic cells.


Asunto(s)
Membrana Celular/metabolismo , Necroptosis , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Factor de Necrosis Tumoral alfa/biosíntesis , Células 3T3 , Animales , Retículo Endoplásmico/metabolismo , Femenino , Ratones , Ratones Endogámicos C57BL , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética
16.
Neuron ; 104(3): 512-528.e11, 2019 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-31493975

RESUMEN

More than 8,000 genes are turned on or off as progenitor cells produce the 7 classes of retinal cell types during development. Thousands of enhancers are also active in the developing retinae, many having features of cell- and developmental stage-specific activity. We studied dynamic changes in the 3D chromatin landscape important for precisely orchestrated changes in gene expression during retinal development by ultra-deep in situ Hi-C analysis on murine retinae. We identified developmental-stage-specific changes in chromatin compartments and enhancer-promoter interactions. We developed a machine learning-based algorithm to map euchromatin and heterochromatin domains genome-wide and overlaid it with chromatin compartments identified by Hi-C. Single-cell ATAC-seq and RNA-seq were integrated with our Hi-C and previous ChIP-seq data to identify cell- and developmental-stage-specific super-enhancers (SEs). We identified a bipolar neuron-specific core regulatory circuit SE upstream of Vsx2, whose deletion in mice led to the loss of bipolar neurons.


Asunto(s)
Eucromatina/metabolismo , Regulación del Desarrollo de la Expresión Génica/fisiología , Heterocromatina/metabolismo , Retina/embriología , Células Bipolares de la Retina/metabolismo , Animales , Cromatina/metabolismo , Secuenciación de Inmunoprecipitación de Cromatina , Elementos de Facilitación Genéticos , Redes Reguladoras de Genes , Proteínas de Homeodominio/genética , Aprendizaje Automático , Ratones , Lámina Nuclear/metabolismo , Regiones Promotoras Genéticas , RNA-Seq , Receptores Citoplasmáticos y Nucleares/genética , Retina/citología , Retina/metabolismo , Retina/ultraestructura , Células Bipolares de la Retina/citología , Células Fotorreceptoras Retinianas Bastones/citología , Células Fotorreceptoras Retinianas Bastones/metabolismo , Análisis de la Célula Individual , Factores de Transcripción/genética , Receptor de Lamina B
17.
Dis Model Mech ; 11(5)2018 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-29666155

RESUMEN

Mutations in SIL1, a cofactor for the endoplasmic reticulum (ER)-localized Hsp70 chaperone, BiP, cause Marinesco-Sjögren syndrome (MSS), an autosomal recessive disorder. Using a mouse model, we characterized molecular aspects of the progressive myopathy associated with MSS. Proteomic profiling of quadriceps at the onset of myopathy revealed that SIL1 deficiency affected multiple pathways critical to muscle physiology. We observed an increase in ER chaperones prior to the onset of muscle weakness, which was complemented by upregulation of multiple components of cellular protein degradation pathways. These responses were inadequate to maintain normal expression of secretory pathway proteins, including insulin and IGF-1 receptors. There was a paradoxical enhancement of downstream PI3K-AKT-mTOR signaling and glucose uptake in SIL1-disrupted skeletal muscles, all of which were insufficient to maintain skeletal muscle mass. Together, these data reveal a disruption in ER homeostasis upon SIL1 loss, which is countered by multiple compensatory responses that are ultimately unsuccessful, leading to trans-organellar proteostasis collapse and myopathy.


Asunto(s)
Retículo Endoplásmico/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Proteínas de Choque Térmico/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatología , Proteostasis , Envejecimiento/patología , Animales , Progresión de la Enfermedad , Chaperón BiP del Retículo Endoplásmico , Insulina/metabolismo , Masculino , Ratones , Modelos Biológicos , Fuerza Muscular , Músculo Esquelético/patología , Músculo Esquelético/ultraestructura , Enfermedades Musculares/metabolismo , Enfermedades Musculares/patología , Enfermedades Musculares/fisiopatología , Proteoma/metabolismo , Receptor de Insulina/metabolismo , Transducción de Señal
18.
Autophagy ; 14(5): 796-811, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29099309

RESUMEN

Mammalian ULK1 (unc-51 like kinase 1) and ULK2, Caenorhabditis elegans UNC-51, and Drosophila melanogaster Atg1 are serine/threonine kinases that regulate flux through the autophagy pathway in response to various types of cellular stress. C. elegans UNC-51 and D. melanogaster Atg1 also promote axonal growth and defasciculation; disruption of these genes results in defective axon guidance in invertebrates. Although disrupting ULK1/2 function impairs normal neurite outgrowth in vitro, the role of ULK1 and ULK2 in the developing brain remains poorly characterized. Here, we show that ULK1 and ULK2 are required for proper projection of axons in the forebrain. Mice lacking Ulk1 and Ulk2 in their central nervous systems showed defects in axonal pathfinding and defasciculation affecting the corpus callosum, anterior commissure, corticothalamic axons and thalamocortical axons. These defects impaired the midline crossing of callosal axons and caused hypoplasia of the anterior commissure and disorganization of the somatosensory cortex. The axon guidance defects observed in ulk1/2 double-knockout mice and central nervous system-specific (Nes-Cre) Ulk1/2-conditional double-knockout mice were not recapitulated in mice lacking other autophagy genes (i.e., Atg7 or Rb1cc1 [RB1-inducible coiled-coil 1]). The brains of Ulk1/2-deficient mice did not show stem cell defects previously attributed to defective autophagy in ambra1 (autophagy/Beclin 1 regulator 1)- and Rb1cc1-deficient mice or accumulation of SQSTM1 (sequestosome 1)+ or ubiquitin+ deposits. Together, these data demonstrate that ULK1 and ULK2 regulate axon guidance during mammalian brain development via a noncanonical (i.e., autophagy-independent) pathway.


Asunto(s)
Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Autofagia , Orientación del Axón , Prosencéfalo/embriología , Prosencéfalo/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Animales , Animales Recién Nacidos , Autofagosomas/metabolismo , Autofagosomas/ultraestructura , Proteína 7 Relacionada con la Autofagia/metabolismo , Homólogo de la Proteína 1 Relacionada con la Autofagia/deficiencia , Proteínas Relacionadas con la Autofagia , Axones/metabolismo , Axones/ultraestructura , Hipocampo/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Células-Madre Neurales/metabolismo , Proteínas Serina-Treonina Quinasas/deficiencia , Corteza Somatosensorial/metabolismo , Proteínas Ubiquitinadas/metabolismo
19.
Cell Rep ; 22(10): 2601-2614, 2018 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-29514090

RESUMEN

Diverse cell types can be reprogrammed into pluripotent stem cells by ectopic expression of Oct4 (Pou5f1), Klf4, Sox3, and Myc. Many of these induced pluripotent stem cells (iPSCs) retain memory, in terms of DNA methylation and histone modifications (epigenetic memory), of their cellular origins, and this may bias subsequent differentiation. Neurons are difficult to reprogram, and there has not been a systematic side-by-side characterization of reprogramming efficiency or epigenetic memory across different neuronal subtypes. Here, we compare reprogramming efficiency of five different retinal cell types at two different stages of development. Retinal differentiation from each iPSC line was measured using a quantitative standardized scoring system called STEM-RET and compared to the epigenetic memory. Neurons with the lowest reprogramming efficiency produced iPSC lines with the best retinal differentiation and were more likely to retain epigenetic memory of their cellular origins. In addition, we identified biomarkers of iPSCs that are predictive of retinal differentiation.


Asunto(s)
Reprogramación Celular , Metilación de ADN , Histonas/metabolismo , Organogénesis , Organoides/crecimiento & desarrollo , Procesamiento Proteico-Postraduccional , Retina/citología , Retina/metabolismo , Animales , Biomarcadores/metabolismo , Técnicas de Cultivo de Célula , Diferenciación Celular , Núcleo Celular/metabolismo , Elementos de Facilitación Genéticos/genética , Epigénesis Genética , Células Madre Pluripotentes Inducidas/metabolismo , Factor 4 Similar a Kruppel , Ratones , Regiones Promotoras Genéticas/genética
20.
Neuron ; 94(3): 550-568.e10, 2017 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-28472656

RESUMEN

In the developing retina, multipotent neural progenitors undergo unidirectional differentiation in a precise spatiotemporal order. Here we profile the epigenetic and transcriptional changes that occur during retinogenesis in mice and humans. Although some progenitor genes and cell cycle genes were epigenetically silenced during retinogenesis, the most dramatic change was derepression of cell-type-specific differentiation programs. We identified developmental-stage-specific super-enhancers and showed that most epigenetic changes are conserved in humans and mice. To determine how the epigenome changes during tumorigenesis and reprogramming, we performed integrated epigenetic analysis of murine and human retinoblastomas and induced pluripotent stem cells (iPSCs) derived from murine rod photoreceptors. The retinoblastoma epigenome mapped to the developmental stage when retinal progenitors switch from neurogenic to terminal patterns of cell division. The epigenome of retinoblastomas was more similar to that of the normal retina than that of retina-derived iPSCs, and we identified retina-specific epigenetic memory.


Asunto(s)
Carcinogénesis/genética , Diferenciación Celular/genética , Reprogramación Celular/genética , Metilación de ADN/genética , Epigénesis Genética , Código de Histonas/genética , Retina/metabolismo , Retinoblastoma/genética , Animales , Animales Modificados Genéticamente , Modelos Animales de Enfermedad , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Ratones , Células Madre Embrionarias de Ratones/citología , Células Madre Embrionarias de Ratones/metabolismo , Retina/embriología , Células Fotorreceptoras Retinianas Bastones/citología , Proteína de Retinoblastoma/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA