Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Calcif Tissue Int ; 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39231826

RESUMEN

Osteogenesis imperfecta (OI) is a rare congenital bone dysplasia characterized by high fracture rates and broad variations in clinical manifestations ranging from mild to increasingly severe and perinatal lethal forms. The underlying mutations affect either the synthesis or processing of the type I procollagen molecule itself or proteins that are involved in the formation and mineralization of the collagen matrix. Consequently, the collagen forming cells, the osteoblasts, become broadly dysfunctional in OI. Strikingly, hypermineralized bone matrix seems to be a frequent feature in OI, despite the variability in clinical severity and mutations in the so far studied different forms of human OI. While the causes of the increased mineral content of the bone matrix are not fully understood yet, there is evidence that the descendants of the osteoblasts, the osteocytes, which play a critical role not only in bone remodeling, but also in mineralization and sensing of mechanical loads, are also highly dysregulated and might be of major importance in the pathogenesis of OI. In this review article, we firstly summarize findings of cellular abnormalities in osteoblasts and osteocytes, alterations of the organic matrix, as well as of the microstructural organization of bone. Secondly, we focus on the hypermineralization of the bone matrix in OI as observed in several different forms of human OI as well as in animal models, its measurement and potential mechanical implications and its effect on the bone mineral density measured by dual X-ray absorptiometry. Thirdly, we give an overview of established medication treatments of OI and new approaches with a focus of their known or possible effects on the bone material, particularly on bone matrix mineralization.

2.
Curr Osteoporos Rep ; 21(6): 787-805, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37897675

RESUMEN

PURPOSE OF REVIEW: Metabolic and genetic bone disorders affect not only bone mass but often also the bone material, including degree of mineralization, matrix organization, and lacunar porosity. The quality of juvenile bone is moreover highly influenced by skeletal growth. This review aims to provide a compact summary of the present knowledge on the complex interplay between bone modeling and remodeling during skeletal growth and to alert the reader to the complexity of bone tissue characteristics in children with bone disorders. RECENT FINDINGS: We describe cellular events together with the characteristics of the different tissues and organic matrix organization (cartilage, woven and lamellar bone) occurring during linear growth. Subsequently, we present typical alterations thereof in disorders leading to over-mineralized bone matrix compared to those associated with low or normal mineral content based on bone biopsy studies. Growth spurts or growth retardation might amplify or mask disease-related alterations in bone material, which makes the interpretation of bone tissue findings in children complex and challenging.


Asunto(s)
Enfermedades Óseas , Calcinosis , Niño , Humanos , Huesos , Enfermedades Óseas/metabolismo , Matriz Ósea/metabolismo , Densidad Ósea , Calcinosis/metabolismo
3.
Calcif Tissue Int ; 109(2): 190-202, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33837801

RESUMEN

Quantitative backscattered electron imaging is an established method to map mineral content distributions in bone and to determine the bone mineralization density distribution (BMDD). The method we applied was initially validated for a scanning electron microscope (SEM) equipped with a tungsten hairpin cathode (thermionic electron emission) under strongly defined settings of SEM parameters. For several reasons, it would be interesting to migrate the technique to a SEM with a field emission electron source (FE-SEM), which, however, would require to work with different SEM parameter settings as have been validated for DSM 962. The FE-SEM has a much better spatial resolution based on an electron source size in the order of several 100 nanometers, corresponding to an about [Formula: see text] to [Formula: see text] times smaller source area compared to thermionic sources. In the present work, we compare BMDD between these two types of instruments in order to further validate the methodology. We show that a transition to higher pixel resolution (1.76, 0.88, and 0.57 µm) results in shifts of the BMDD peak and BMDD width to higher values. Further the inter-device reproducibility of the mean calcium content shows a difference of up to 1 wt% Ca, while the technical variance of each device can be reduced to [Formula: see text] wt% Ca. Bearing in mind that shifts in calcium levels due to diseases, e.g., high turnover osteoporosis, are often in the range of 1 wt% Ca, both the bone samples of the patients as well as the control samples have to be measured on the same SEM device. Therefore, we also constructed new reference BMDD curves for adults to be used for FE-SEM data comparison.


Asunto(s)
Huesos , Electrones , Adulto , Densidad Ósea , Calcificación Fisiológica , Humanos , Reproducibilidad de los Resultados
4.
Int J Mol Sci ; 22(9)2021 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-33925942

RESUMEN

Osteocytes are terminally differentiated osteoblasts embedded within the bone matrix and key orchestrators of bone metabolism. However, they are generally not characterized by conventional bone histomorphometry because of their location and the limited resolution of light microscopy. OI is characterized by disturbed bone homeostasis, matrix abnormalities and elevated bone matrix mineralization density. To gain further insights into osteocyte characteristics and bone metabolism in OI, we evaluated 2D osteocyte lacunae sections (OLS) based on quantitative backscattered electron imaging in transiliac bone biopsy samples from children with OI type I (n = 19) and age-matched controls (n = 24). The OLS characteristics were related to previously obtained, re-visited histomorphometric parameters. Moreover, we present pediatric bone mineralization density distribution reference data in OI type I (n = 19) and controls (n = 50) obtained with a field emission scanning electron microscope. Compared to controls, OI has highly increased OLS density in cortical and trabecular bone (+50.66%, +61.73%; both p < 0.001), whereas OLS area is slightly decreased in trabecular bone (-10.28%; p = 0.015). Correlation analyses show a low to moderate, positive association of OLS density with surface-based bone formation parameters and negative association with indices of osteoblast function. In conclusion, hyperosteocytosis of the hypermineralized OI bone matrix associates with abnormal bone cell metabolism and might further impact the mechanical competence of the bone tissue.


Asunto(s)
Osteocitos/metabolismo , Osteogénesis Imperfecta/metabolismo , Osteogénesis Imperfecta/patología , Densidad Ósea/fisiología , Desarrollo Óseo/fisiología , Matriz Ósea/patología , Huesos/metabolismo , Niño , Preescolar , Femenino , Humanos , Masculino , Osteoblastos/patología , Osteocitos/patología , Osteocitos/fisiología , Osteogénesis/fisiología
5.
Wien Med Wochenschr ; 171(5-6): 111-119, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33616798

RESUMEN

Transiliac bone biopsy samples are used to evaluate histology and bone cell activity in unclear pathological conditions. However, much additional information can be obtained from such bone samples. Using the example of osteogenesis imperfecta (OI), the current article describes how biopsy samples can be further used to study bone material characteristics including the degree of matrix mineralization, organic matrix properties, mineral particle size and bone nanoporosity. OI is a heritable collagen-related disorder that is phenotypically and genetically extremely heterogeneous. One essential finding was that OI bone is hypermineralized independently of clinical severity. Moreover, mineral particles in OI bone are of normal size or even smaller, but more densely packed than normally. Another recent finding was that in some forms of OI, collagen orientation is highly disorganized, indicating that the collagen-mineral particle network is profoundly altered in OI. These findings have contributed to the understanding of impaired bone strength in OI.


Asunto(s)
Osteogénesis Imperfecta , Biopsia , Densidad Ósea , Huesos , Humanos , Osteocitos , Osteogénesis Imperfecta/diagnóstico
6.
J Struct Biol ; 211(3): 107556, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32619592

RESUMEN

X-linked hypophosphatemia (XLH) caused by PHEX mutations results in elevated serum FGF23 levels, renal phosphate wasting and low 1,25-dihydroxyvitamin D. The glycophosphoprotein osteopontin, a potent inhibitor of mineralization normally degraded by PHEX, accumulates within the bone matrix. Conventional therapy consisting of supplementation with phosphate and vitamin D analogs is burdensome and the effects on bone material poorly characterized. We analyzed transiliac bone biopsies from four adult patients, two of them severely affected due to no diagnosis and no treatment until adulthood. We used light microscopy, qBEI and FTIRI to study histology, histomorphometry, bone mineralization density distribution, properties of the organic matrix and size of hypomineralized periosteocytic lesions. Non-treatment resulted in severe osteomalacia, twice the amount of mineralized trabecular volume, multiple osteon-like perforations, continuity of lamellae from mineralized to unmineralized areas and distinctive patches of woven bone. Periosteocytic lesions were larger than in treated patients. The latter had nearly normal osteoid thicknesses, although surface was still elevated. The median calcium content of the matrix was always within normal range, although the percentage of lowly mineralized bone areas was highly increased in non-treated patients, resulting in a marked heterogeneity in mineralization. Divalent collagen cross-links were evident independently of the mineral content of the matrix. Broad osteoid seams lacked measurable pyridinoline, a mature trivalent cross-link and exhibited considerable acidic lipid content, typically found in matrix vesicles. Based on our results, we propose a model that possibly integrates the relationship between the observed mineralization disturbances, FGF23 secretion and the known osteopontin accumulation in XLH.


Asunto(s)
Huesos/diagnóstico por imagen , Raquitismo Hipofosfatémico Familiar/diagnóstico por imagen , Raquitismo Hipofosfatémico Familiar/patología , Adulto , Densidad Ósea , Matriz Ósea/diagnóstico por imagen , Matriz Ósea/patología , Huesos/patología , Calcitriol/uso terapéutico , Raquitismo Hipofosfatémico Familiar/tratamiento farmacológico , Raquitismo Hipofosfatémico Familiar/genética , Factor-23 de Crecimiento de Fibroblastos , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Humanos , Masculino , Endopeptidasa Neutra Reguladora de Fosfato PHEX/genética , Fosfatos/administración & dosificación , Fosfatos/uso terapéutico , Estudios Retrospectivos , Espectroscopía Infrarroja por Transformada de Fourier
7.
Kidney Int ; 94(5): 1002-1012, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30348285

RESUMEN

Pediatric renal osteodystrophy is characterized by skeletal mineralization defects, but the role of osteoblast and osteocyte maturation in the pathogenesis of these defects is unknown. We evaluated markers of osteocyte maturation and programmed cell death in iliac crest biopsy samples from pediatric dialysis patients and healthy controls. We evaluated the relationship between numbers of fibroblast growth factor 23 (FGF23)-expressing osteocytes and histomorphometric parameters of skeletal mineralization. We confirmed that chronic kidney disease (CKD) causes intrinsic changes in bone cell maturation using an in vitro model of primary osteoblasts from patients with CKD and healthy controls. FGF23 co-localized with the early osteocyte marker E11/gp38, suggesting that FGF23 is a marker of early osteocyte maturation. Increased numbers of early osteocytes and decreased osteocyte apoptosis characterized CKD bone. Numbers of FGF23-expressing osteocytes were highest in patients with preserved skeletal mineralization indices, and packets of matrix surrounding FGF23-expressing osteocytes appeared to have entered secondary mineralization. Primary osteoblasts from patients with CKD retained impaired maturation and mineralization characteristics in vitro. Addition of FGF23 did not affect primary osteoblast mineralization. Thus, CKD is associated with intrinsic changes in osteoblast and osteocyte maturation, and FGF23 appears to mark a relatively early stage in osteocyte maturation. Improved control of renal osteodystrophy and FGF23 excess will require further investigation into the pathogenesis of CKD-mediated osteoblast and osteocyte maturation failure.


Asunto(s)
Trastorno Mineral y Óseo Asociado a la Enfermedad Renal Crónica/etiología , Osteocitos/fisiología , Adolescente , Adulto , Apoptosis , Niño , Preescolar , Femenino , Factor-23 de Crecimiento de Fibroblastos , Factores de Crecimiento de Fibroblastos/análisis , Humanos , Masculino , Osteoblastos/fisiología , Insuficiencia Renal Crónica/complicaciones , Adulto Joven
8.
Am J Med Genet A ; 176(7): 1578-1586, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29736964

RESUMEN

BACKGROUND: Idiopathic Juvenile Osteoporosis (IJO) refers to significantly lower than expected bone mass manifesting in childhood with no identifiable aetiology. IJO classically presents in early pubertal period with multiple fractures including metaphyseal and vertebral crush fractures, and low bone-mass. METHODS: Here we describe two patients and provide information on their clinical phenotype, genotype and bone material analysis in one of the patients. RESULTS: Patient 1: 40-year old adult male diagnosed with IJO in childhood who re-presented with a hip fracture as an adult. Genetic analysis identified a pathogenic PLS3 hemizygous variant, c.1765del in exon 16. Patient 2: 15-year old boy with multiple vertebral fractures and bone biopsy findings suggestive of IJO who also has a diagnosis of autism spectrum disorder. Genetic analysis identified a maternally inherited PLS3 pathogenic c.1295T>A variant in exon 12. Analyses of the transiliac bone sample revealed severe reduction of trabecular volume and bone turnover indices and elevated bone matrix mineralisation. DISCUSSION: We propose that genetic testing for PLS3 should be undertaken in patients presenting with a current or previous history of IJO as this has implications for genetic counselling and cascade screening. The extensive evaluation of the transiliac biopsy sample of Patient 2 revealed a novel bone phenotype. CONCLUSION: This report includes a review of IJO and genetic causes of osteoporosis, and suggests that existing cases of IJO should be screened for PLS3. Through analysis of bone material properties in Patient 2, we can conclude that PLS3 does have a role in bone mineralisation.


Asunto(s)
Calcificación Fisiológica , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Glicoproteínas de Membrana/genética , Proteínas de Microfilamentos/genética , Mutación , Osteoporosis/genética , Adolescente , Adulto , Femenino , Enfermedades Genéticas Ligadas al Cromosoma X/patología , Humanos , Masculino , Osteoporosis/patología , Linaje , Fenotipo , Pronóstico
9.
BMC Pediatr ; 18(1): 183, 2018 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-29940979

RESUMEN

BACKGROUND: Whilst hypocalcemic complications from vitamin D deficiency are considered rare in high-income countries, they are highly prevalent among Black, Asian and Minority Ethnic (BAME) group with darker skin. To date, the extent of osteomalacia in such infants and their family members is unknown. Our aim was to investigate clinical, cardiac and bone histomorphometric characteristics, bone matrix mineralization in affected infants and to test family members for biochemical evidence of osteomalacia. CASE PRESENTATION: Three infants of BAME origin (aged 5-6 months) presented acutely in early-spring with cardiac arrest, respiratory arrest following seizure or severe respiratory distress, with profound hypocalcemia (serum calcium 1.22-1.96 mmol/L). All infants had dark skin and vitamin D supplementation had not been addressed during child surveillance visits. All three had severely dilated left ventricles (z-scores + 4.6 to + 6.5) with reduced ejection fraction (25-30%; normal 55-70), fractional shortening (7 to 15%; normal 29-40) and global hypokinesia, confirming hypocalcemic dilated cardiomyopathy. They all had low serum levels of 25 hydroxyvitamin D (25OHD < 15 nmol/L), and elevated parathyroid hormone (PTH; 219-482 ng/L) and alkaline phosphatase (ALP; 802-1123 IU/L), with undiagnosed rickets on radiographs. One infant died from cardiac arrest. At post-mortem examination, his growth plate showed a widened, irregular zone of hypertrophic chondrocytes. Histomorphometry and backscattered electron microscopy of a trans-iliac bone biopsy sample revealed increased osteoid thickness (+ 262% of normal) and osteoid volume/bone volume (+ 1573%), and extremely low bone mineralization density. Five of the nine tested family members had vitamin D deficiency (25OHD < 30 nmol/L), three had insufficiency (< 50 nmol/L) and 6/9 members had elevated PTH and ALP levels. CONCLUSIONS: The severe, hidden, cardiac and bone pathology described here exposes a failure of public health prevention programs, as complications from vitamin D deficiency are entirely preventable by routine supplementation. The family investigations demonstrate widespread deficiency and undiagnosed osteomalacia in ethnic risk groups and call for protective legislation.


Asunto(s)
Cardiomiopatía Dilatada/etiología , Paro Cardíaco/etiología , Hipocalcemia/complicaciones , Grupos Minoritarios , Osteomalacia/etiología , Insuficiencia Respiratoria/etiología , Raquitismo/complicaciones , Densidad Ósea , Inglaterra , Femenino , Placa de Crecimiento/patología , Humanos , Hipocalcemia/etnología , Hipocalcemia/patología , Ilion/patología , Lactante , Masculino , Raquitismo/etnología , Raquitismo/patología
11.
Wien Med Wochenschr ; 165(13-14): 271-7, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26208477

RESUMEN

The main clinical features of osteogenesis imperfecta (OI) are low bone mass and high bone fragility. While the decrease in bone mass is generally regarded as an indicator of disease severity, bone fragility appears as the hallmark of the disorder. Bone has a multiscale hierarchical structural organization and is optimized to resist to fractures. In OI, modifications at the molecular level affect the total mechanical integrity of the bone. A specific characteristic in OI is that the bone matrix is abnormally high mineralized independently of the underlying mutation or clinical severity. The increased matrix mineralization affects bone material quality, leading to increased stiffness and brittleness and making bone prone to fractures. The purpose of this review is to give further insights on bone matrix mineralization in OI and to discuss advantages and pitfalls of invasive and noninvasive imaging techniques.


Asunto(s)
Densidad Ósea , Osteogénesis Imperfecta/diagnóstico , Absorciometría de Fotón , Adolescente , Biopsia , Densidad Ósea/genética , Densidad Ósea/fisiología , Matriz Ósea/patología , Niño , Diagnóstico por Imagen , Fracturas Espontáneas/diagnóstico , Fracturas Espontáneas/genética , Humanos , Osteogénesis Imperfecta/genética , Factores de Riesgo , Tomografía Computarizada por Rayos X
12.
Wien Med Wochenschr ; 165(13-14): 264-70, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26208476

RESUMEN

Osteogenesis imperfecta (OI) is an extremely heterogeneous group of heritable connective tissue disorders. Most of the affected patients carry autosomal dominant mutations in the genes encoding for collagen type I, the most abundant protein of the bone extracellular matrix. The resulting phenotypes are extremely broad and have been classified by Sillence and colleagues into four groups according to clinical, radiological and genetic criteria.More recently, proteins have been described that interact directly or indirectly with collagen biosynthesis and their deficiency result in rare forms of mostly autosomal recessive OI sharing phenotypic features of 'classical' types but lacking primary defects in type I collagen. Consequently the Sillence classification has been gradually expanded to include novel forms based on the underlying mutations. The goal of this article is to revisit the actual OI classification and to outline current approaches in categorizing the disorder.


Asunto(s)
Osteogénesis Imperfecta/clasificación , Aberraciones Cromosómicas , Colágeno Tipo I/genética , Cadena alfa 1 del Colágeno Tipo I , Análisis Mutacional de ADN , Genes Dominantes/genética , Genes Recesivos/genética , Humanos , Osteogénesis Imperfecta/diagnóstico , Osteogénesis Imperfecta/genética , Fenotipo , Procesamiento Proteico-Postraduccional/genética
13.
Bone ; : 117236, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39151745

RESUMEN

Osteocytes are mechanosensitive, bone-embedded cells which are connected via dendrites in a lacuno-canalicular network and regulate bone resorption and formation balance. Alterations in osteocyte lacunar volume, shape and density have been identified in conditions of aging, osteoporosis and osteolytic bone metastasis, indicating patterns of impaired bone remodeling, osteolysis and disease progression. Osteolytic bone disease is a hallmark of the hematologic malignancy multiple myeloma (MM), in which monoclonal plasma cells in the bone marrow disrupt the bone homeostasis and induce excessive resorption at local and distant sites. Qualitative and quantitative changes in the 3D osteocyte lacunar morphometry have not yet been evaluated in MM, nor in the precursor conditions monoclonal gammopathy of undetermined significance (MGUS) and smoldering multiple myeloma (SMM). In this study, we characterized the osteocyte lacunar morphology in trabecular bone of the iliac crest at the ultrastructural level using high resolution microCT in human bone biopsy samples of three MGUS, two SMM and six newly diagnosed MM. In MGUS, SMM and MM we found a trend for lower lacunar density and a shift towards larger lacunae with disease progression (higher 50 % cutoff of the lacunar volume cumulative distribution) in the small osteocyte lacunae 20-900 µm3 range compared to control samples. In the larger lacunae 900-3000 µm3 range, we detected significantly higher lacunar density and microporosity in the MM group compared to the MGUS/SMM group. Regarding the shape distribution, the MGUS/SMM group showed a trend for flatter, more elongated and anisotropic osteocyte lacunae compared to the control group. Altogether, our findings suggest that osteocytes in human MM bone disease undergo changes in their lacunae density, volume and shape, which could be an indicator for osteolysis and disease progression. Future studies are needed to understand whether alterations of the lacunae architecture affect the mechanoresponsiveness of osteocytes and ultimately bone adaptation and fracture resistance in MM and its precursors conditions.

14.
J Cell Physiol ; 228(2): 402-7, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22740316

RESUMEN

Mice lacking the renal epithelial Ca(2+) channel TRPV5 (TRPV5(-/-)) display impaired renal Ca(2+) reabsorption, hypercalciuria, and intestinal Ca(2+) hyperabsorption, due to secondary hypervitaminosis D. Using these mice, we previously demonstrated that ZK191784 acts as an intestine-specific 1,25(OH)(2) D(3) antagonist without affecting serum calcium levels. On the other hand, it acted as an agonist in the kidney and the effects of ZK191784 on bone were ambiguous. The present study was undertaken to further evaluate the effect of the vitamin D receptor antagonist on murine bone in mice lacking TRPV5. Eight-week-old female Trpv5(+/+) and Trpv5(-/-) mice were treated for 4 weeks with or without 50 µg/kg/day ZK191784. Quantitative backscattered electron imaging showed that the reduced bone matrix mineralization found in femoral bones of Trpv5(-/-) mice was partially but significantly restored upon ZK191784 treatment, just as we observed for trabecular bone thickness. This supports the significance of 1,25(OH)(2) D(3) and optimal control of Ca(2+) homeostasis for bone formation and matrix mineralization. Restoration also took place at the bone gene expression level, where 1α-hydroxylase (Cyp27b1) mRNA in femurs from ZK-treated Trpv5(-/-) mice was upregulated compared to control levels. The downregulated 24-hydroxylase (Cyp24a1) gene expression in femoral bone indicated local vitamin D resistance in the mice treated with ZK191784. Phosphate homeostasis was unaffected between the groups as shown by unaltered serum PO(4)(3-) and fibroblast growth factor (FGF) 23 as well as Fgf23 mRNA expression in bone. In conclusion, circulating 1,25(OH)(2) D(3) is important for optimal control of Ca(2+) homeostasis but also for controlled bone formation and matrix mineralization.


Asunto(s)
Matriz Ósea/efectos de los fármacos , Calcificación Fisiológica/efectos de los fármacos , Calcitriol/análogos & derivados , Canales de Calcio/deficiencia , Canales Catiónicos TRPV/deficiencia , Vitamina D/análogos & derivados , 25-Hidroxivitamina D3 1-alfa-Hidroxilasa/biosíntesis , Animales , Calcitriol/farmacología , Calcio/metabolismo , Colecalciferol/sangre , Colecalciferol/metabolismo , Femenino , Fémur/efectos de los fármacos , Factor-23 de Crecimiento de Fibroblastos , Factores de Crecimiento de Fibroblastos/biosíntesis , Regulación de la Expresión Génica/efectos de los fármacos , Homeostasis/efectos de los fármacos , Ratones , Fosfatos/sangre , Esteroide Hidroxilasas/biosíntesis , Vitamina D/antagonistas & inhibidores , Vitamina D3 24-Hidroxilasa
15.
Am J Kidney Dis ; 61(5): 767-77, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23465957

RESUMEN

BACKGROUND: Patients with chronic kidney disease (CKD) develop renal osteodystrophy with alterations in bone turnover, mineralization, and volume (TMV). A specific skeletal complication in children is growth impairment, which currently is treated by recombinant human growth hormone (rhGH). The effects on bone material properties are poorly understood. This study assesses the effects of rhGH treatment on bone matrix mineralization. STUDY DESIGN: Observational study. SETTING & PARTICIPANTS: 18 short children and adolescents (aged 3.6-16 years) with CKD on dialysis therapy. PREDICTOR: rhGH treatment for 1 year. OUTCOMES: Tetracycline-labeled bone biopsy classified according to the TMV system. MEASUREMENTS: Bone mineralization density distribution (BMDD) was evaluated by quantitative backscattered electron imaging in trabecular and cortical compartments. Additional data for patients' height and biochemical bone serum parameters were obtained. RESULTS: Prior to rhGH treatment, our cohort showed low bone turnover and high mineralization densities versus reference data: Ca(mean) (weighted mean calcium content) in cancellous bone, +3.3% (P = 0.04); Ca(mean) in cortical bone, +6.7% (P < 0.001); Ca(peak) (mode of the BMDD) in cancellous bone, +5.0% (P < 0.001); Ca(peak) in cortical bone, +8.2% (P < 0.001); Ca(width) (heterogeneity in mineralization), no significant difference for cancellous (P = 0.2) and cortical (P = 0.1) bone; Ca(high) (portion of fully mineralized bone) in cancellous bone, 5-fold greater (P < 0.001); Ca(high) in cortical bone, 14-fold greater (P < 0.001); Ca(low) (portion of low mineralized bone) in cancellous bone, +23.9% (P = 0.02); Ca(low) in cortical bone, -22.2% (P = 0.05). After rhGH treatment, height increased by 9.1 cm (P < 0.001) and bone turnover indices to normal values or beyond. Matrix mineralization was lesser and more heterogeneous compared to baseline: Ca(width) for cancellous bone, +15.3% (P < 0.001); Ca(width) for cortical bone, +34.1% (P < 0.001). Ca(mean), Ca(peak), and Ca(high) for cancellous bone and Ca(mean) and Ca(peak) for cortical bone were no longer significantly different from reference data. Ca(high) for cortical bone dramatically decreased after treatment but was still substantially greater than reference data. LIMITATIONS: Low case number per TMV subgroup, no measurements of fibroblast growth factor 23. CONCLUSIONS: Children and adolescents with CKD and growth deficiency are at risk of having low bone turnover. rhGH treatment improves height and concomitantly bone modeling/remodeling, which appears beneficial for bone matrix mineralization.


Asunto(s)
Biopsia/métodos , Matriz Ósea/metabolismo , Calcinosis/metabolismo , Hormona de Crecimiento Humana/uso terapéutico , Fallo Renal Crónico/sangre , Riñón/patología , Diálisis Renal/métodos , Adolescente , Densidad Ósea , Matriz Ósea/efectos de los fármacos , Calcinosis/etiología , Calcinosis/patología , Niño , Preescolar , Femenino , Estudios de Seguimiento , Humanos , Riñón/metabolismo , Fallo Renal Crónico/patología , Fallo Renal Crónico/terapia , Masculino , Diálisis Renal/efectos adversos
16.
Calcif Tissue Int ; 92(3): 261-9, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23179105

RESUMEN

Odanacatib (ODN) has been developed as a selective inhibitor of cathepsin K, the major cysteine protease in osteoclasts. In adult rhesus monkeys, treatment with ODN prevents ovariectomy-induced bone loss in lumbar vertebrae and hip. In this study, we evaluate the effects of ODN on bone mineralization density distribution (BMDD) by quantitative backscattered electron imaging in vertebral spongiosa, distal femoral metaphyseal and cortical shaft from monkeys (aged 16-23 years), treated with vehicle (n=5) or ODN (6 mg/kg, n=4 or 30 mg/kg, n=4, PO daily) for 21 months. Dual-energy X-ray absorptiometry was measured in a subset of distal femoral samples. In lumbar vertebrae there was a shift to higher mineralization in samples from ODN-treated groups, compared to vehicle: CaMean (+4%), CaPeak (+3%), CaWidth (-9%), CaLow (-28%) in the 6 mg/kg group and CaMean (+5.1%, p<0.023), CaPeak (+3.4%, p<0.046), CaWidth (-15.7%, p=0.06) and CaLow (-38.2%, p<0.034) in the 30 mg/kg group. In distal femoral metaphyseal cancellous bone, there was a clear tendency toward a dose-dependent increase in matrix mineralization, as in the spine. However, primary and osteonal bone of the distal cortical diaphyses showed no significant change in BMDD, whereas bone mineral density was significantly increased after treatment. In ovariectomized monkeys, this study shows that ODN treatment increased trabecular BMDD, consistent with its previously reported ability to reduce cancellous remodeling. Here, ODN also showed no changes in BMDD in cortical bone sites, consistent with its actions on maintaining endocortical and stimulating periosteal bone formation.


Asunto(s)
Compuestos de Bifenilo/farmacología , Conservadores de la Densidad Ósea/farmacología , Calcificación Fisiológica/efectos de los fármacos , Absorciometría de Fotón , Animales , Densidad Ósea/efectos de los fármacos , Femenino , Fémur/efectos de los fármacos , Macaca mulatta , Ovariectomía , Vértebras Torácicas/efectos de los fármacos
17.
Skeletal Radiol ; 42(2): 187-94, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22955449

RESUMEN

OBJECTIVES: Osteogenesis imperfecta (OI) is an inherited disorder characterized by increased bone fragility with recurrent fractures that leads to skeletal deformities in severe cases. Consequently, in most OI patients, the hip is the only reliable measuring site for estimating future fracture risk. The aim of the study was to assess the applicability of hip structure analysis (HSA) by DXA in adult patients with osteogenesis imperfecta. MATERIALS AND METHODS: We evaluated bone mineral density (BMD) and hip structure analysis (HSA) by DXA, including cross-sectional area (CSA), cross-sectional moment of inertia (CSMI) and femoral strength index (FSI) in 30 adult patients with different types of OI and 30 age-matched healthy controls (CO). The OI total group (OI-tot) was divided into two subgroups: the mild OI I group (OI-I) and the more severe OI III and IV group (OI-III-IV). RESULTS: The mean neck BMD of OI-I and OI-III-IV were significantly lower compared to CO (-15.9 %, p < 0.005 and -37.5 %, p < 0.001 respectively). Similar results were observed at trochanter and total hip. CSA and the CSMI value were significantly lower for OI-I (-23.2 %, p < 0.001) and OI-III-IV (-45.9 %, p < 0.001) in comparison to CO. In addition, significant differences were found between the mild OI-I and the severe OI-III-IV group (-29.6 %, p < 0.05). FSI was significantly decreased in the OI-III-IV (25.7 %, p < 0.05) in comparison to the CO. Furthermore, significant correlations between BMD and HSA and between HSA and height and weight were found in osteogenesis imperfecta and controls. CONCLUSION: BMD measurement in osteogenesis imperfecta patients is very critical. The combination of BMD and geometric structural measurements at the hip in osteogenesis imperfecta patients may represent an additional helpful means in estimating bone strength and fracture risk.


Asunto(s)
Absorciometría de Fotón/métodos , Densidad Ósea , Fémur/diagnóstico por imagen , Fémur/fisiopatología , Osteogénesis Imperfecta/diagnóstico por imagen , Osteogénesis Imperfecta/fisiopatología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
18.
Eur J Med Genet ; 66(11): 104856, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37758163

RESUMEN

Osteogenesis imperfecta (OI) and hypophosphatasia (HPP) are rare skeletal disorders caused by mutations in the genes encoding collagen type I (COL1A, COL1A2) and tissue-non-specific isoenzyme of alkaline phosphatase (ALPL), respectively. Both conditions result in skeletal deformities and bone fragility although bone tissue abnormalities differ considerably. Children with OI have low bone mass and hypermineralized matrix, whereas HPP children develop rickets and osteomalacia. We report a family, father and three children, affected with growth retardation, low bone mass and recurrent fractures. None of them had rickets, blue sclera or dentinogenesis imperfecta. ALP serum levels were low and genetics revealed in the four probands heterozygous pathogenic mutations in COL1A2 c.838G > A (p.Gly280Ser) and in ALPL c.1333T > C (p.Ser445Pro). After multidisciplinary meeting, a diagnostic transiliac bone biopsy was indicated for each sibling for therapeutic decision. Bone histology and histomorphometry, as compared to reference values of children with OI type I as well as, to a control pediatric patient harboring the same COL1A2 mutation, revealed similarly decreased trabecular bone volume, increased osteocyte lacunae, but additionally severe osteomalacia. Quantitative backscattered electron imaging demonstrated that bone matrix mineralization was not as decreased as expected for osteomalacia. In summary, we observed within each biopsy samples classical features of OI and classical features of HPP. The apparent nearly normal bone mineralization density distribution results presumably from divergent effects of OI and HPP on matrix mineralization. A combination therapy was initiated with ALP enzyme-replacement and one month later with bisphosphonates. The ongoing treatment led to improved skeletal growth, increased BMD and markedly reduced fracture incidence.


Asunto(s)
Calcinosis , Fracturas Múltiples , Hipofosfatasia , Osteogénesis Imperfecta , Osteomalacia , Raquitismo , Niño , Humanos , Osteogénesis Imperfecta/tratamiento farmacológico , Osteogénesis Imperfecta/genética , Hipofosfatasia/tratamiento farmacológico , Hipofosfatasia/genética , Osteomalacia/genética , Osteomalacia/patología , Mutación , Fosfatasa Alcalina/genética
19.
Front Endocrinol (Lausanne) ; 14: 1137573, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37455927

RESUMEN

Bi-allelic variants in ASCC1 cause the ultrarare bone fragility disorder "spinal muscular atrophy with congenital bone fractures-2" (SMABF2). However, the mechanism by which ASCC1 dysfunction leads to this musculoskeletal condition and the nature of the associated bone defect are poorly understood. By exome sequencing, we identified a novel homozygous deletion in ASCC1 in a female infant. She was born with severe muscular hypotonia, inability to breathe and swallow, and virtual absence of spontaneous movements; showed progressive brain atrophy, gracile long bones, very slender ribs, and a femur fracture; and died from respiratory failure aged 3 months. A transiliac bone sample taken postmortem revealed a distinct microstructural bone phenotype with low trabecular bone volume, low bone remodeling, disordered collagen organization, and an abnormally high bone marrow adiposity. Proteomics, RNA sequencing, and qPCR in patient-derived skin fibroblasts confirmed that ASCC1 was hardly expressed on protein and RNA levels compared with healthy controls. Furthermore, we demonstrate that mutated ASCC1 is associated with a downregulation of RUNX2, the master regulator of osteoblastogenesis, and SERPINF1, which is involved in osteoblast and adipocyte differentiation. It also exerts an inhibitory effect on TGF-ß/SMAD signaling, which is important for bone development. Additionally, knockdown of ASCC1 in human mesenchymal stromal cells (hMSCs) suppressed their differentiation capacity into osteoblasts while increasing their differentiation into adipocytes. This resulted in reduced mineralization and elevated formation of lipid droplets. These findings shed light onto the pathophysiologic mechanisms underlying SMABF2 and assign a new biological role to ASCC1 acting as an important pro-osteoblastogenic and anti-adipogenic regulator.


Asunto(s)
Adipogénesis , Proteínas , Lactante , Humanos , Femenino , Homocigoto , Eliminación de Secuencia , Diferenciación Celular , Proteínas/genética , Proteínas Portadoras/genética
20.
Acta Biomater ; 157: 275-287, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36549635

RESUMEN

Osteocytes act as bone mechanosensors, regulators of osteoblast/osteoclast activity and mineral homeostasis, however, knowledge about their functional/morphological changes throughout life is limited. We used quantitative backscattered electron imaging (qBEI) to investigate osteocyte lacunae sections (OLS) as a 2D-surrogate characterizing the osteocytes. OLS characteristics, the density of mineralized osteocyte lacunae (i.e., micropetrotic osteocytes, md.OLS-Density in nb/mm2) and the average degree of mineralization (CaMean in weight% calcium) of cortex and spongiosa were analyzed in transiliac biopsy samples from healthy individuals under 30 (n=59) and over 30 years (n=50) (i.e., before and after the age of peak bone mass, respectively). We found several differences in OLS-characteristics: 1). Inter-individually between the age groups: OLS-Density and OLS-Porosity were reduced by about 20% in older individuals in spongiosa and in cortex versus younger probands (both, p < 0.001). 2). Intra-individually between bone compartments: OLS-Density was higher in the cortex, +18.4%, p < 0.001 for younger and +7.6%, p < 0.05 for older individuals. Strikingly, the most frequent OLS nearest-neighbor distance was about 30 µm in both age groups and at both bone sites revealing a preferential organization of osteocytes in clusters. OLS-Density was negatively correlated with CaMean in both spongiosa and cortex (both, p < 0.001). Few mineralized OLS were found in young individuals along with an increase of md.OLS-Density with age. In summary, this transiliac bone sample analysis of 200000 OLS from 109 healthy individuals throughout lifespan reveals several age-related differences in OLS characteristics. Moreover, our study provides reference data from healthy individuals for different ages to be used for diagnosis of bone abnormalities in diseases. STATEMENT OF SIGNIFICANCE: Osteocytes are bone cells embedded in lacunae within the mineralized bone matrix and have a key role in the bone metabolism and the mineral homeostasis. Not easily accessible, we used quantitative backscattered electron imaging to determine precisely number and shape descriptors of the osteocyte lacunae in 2D. We analyzed transiliac biopsy samples from 109 individuals with age distributed from 2 to 95 years. Compact cortical bone showed constantly higher lacunar density than cancellous bone but the lacunar density in both bone tissue decreased with age before the peak bone mass age at 30 years and stabilized or even increased after this age. This extensive study provides osteocyte lacunae reference data from healthy individuals usable for bone pathology diagnosis.


Asunto(s)
Longevidad , Osteocitos , Humanos , Anciano , Preescolar , Niño , Adolescente , Adulto Joven , Adulto , Persona de Mediana Edad , Anciano de 80 o más Años , Osteocitos/patología , Huesos , Matriz Ósea , Densidad Ósea , Biopsia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA