Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nat Med ; 30(4): 958-968, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38641741

RESUMEN

Causal machine learning (ML) offers flexible, data-driven methods for predicting treatment outcomes including efficacy and toxicity, thereby supporting the assessment and safety of drugs. A key benefit of causal ML is that it allows for estimating individualized treatment effects, so that clinical decision-making can be personalized to individual patient profiles. Causal ML can be used in combination with both clinical trial data and real-world data, such as clinical registries and electronic health records, but caution is needed to avoid biased or incorrect predictions. In this Perspective, we discuss the benefits of causal ML (relative to traditional statistical or ML approaches) and outline the key components and steps. Finally, we provide recommendations for the reliable use of causal ML and effective translation into the clinic.


Asunto(s)
Toma de Decisiones Clínicas , Aprendizaje Automático , Humanos , Causalidad , Resultado del Tratamiento , Registros Electrónicos de Salud
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA