Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Geochem Trans ; 21(1): 2, 2020 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-32060743

RESUMEN

Chromium contamination is a serious environmental issue in areas affected by leather tanning and metal plating, and green rust sulfate has been tested extensively as a potential material for in situ chemical reduction of hexavalent chromium in groundwater. Reported products and mechanisms for the reaction have varied, most likely because of green rust's layered structure, as reduction at outer and interlayer surfaces might produce different reaction products with variable stabilities. Based on studies of Cr(III) oxidation by biogenic Mn (IV) oxides, Cr mobility in oxic soils is controlled by the solubility of the Cr(III)-bearing phase. Therefore, careful engineering of green rust properties, i.e., crystal/particle size, morphology, structure, and electron availability, is essential for its optimization as a remediation reagent. In the present study, pure green rust sulfate and green rust sulfate with Al, Mg and Zn substitutions were synthesized and reacted with identical chromate (CrO42-) solutions. The reaction products were characterized by X-ray diffraction, pair distribution function analysis, X-ray absorption spectroscopy and transmission electron microscopy and treated with synthetic δ-MnO2 to assess how easily Cr(III) in the products could be oxidized. It was found that Mg substitution had the most beneficial effect on Cr lability in the product. Less than 2.5% of the Cr(III) present in the reacted Mg-GR was reoxidized by δ-MnO2 within 14 days, and the particle structure and Cr speciation observed during X-ray scattering and absorption analyses of this product suggested that Cr(VI) was reduced in its interlayer. Reduction in the interlayer lead to the linkage of newly-formed Cr(III) to hydroxyl groups in the adjacent octahedral layers, which resulted in increased structural coherency between these layers, distinctive rim domains, sequestration of Cr(III) in insoluble Fe oxide bonding environments resistant to reoxidation and partial transformation to Cr(III)-substituted feroxyhyte. Based on the results of this study of hexavalent chromium reduction by green rust sulfate and other studies, further improvements can also be made to this remediation technique by reacting chromate with a large excess of green rust sulfate, which provides excess Fe(II) that can catalyze transformation to more crystalline iron oxides, and synthesis of the reactant under alkaline conditions, which has been shown to favor chromium reduction in the interlayer of Fe(II)-bearing phyllosilicates.

2.
Environ Sci Technol ; 54(6): 3297-3305, 2020 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-32078305

RESUMEN

"Green rust" (GR), a redox-active Fe(II)-Fe(III) layered double hydroxide, is a potential environmentally relevant mineral substrate for arsenic (As) sequestration in reduced, subsurface environments. GR phases have high As uptake capacities at circum-neutral pH conditions, but the exact interaction mechanism between the GR phases and As species is still poorly understood. Here, we documented the bonding and interaction mechanisms between GR sulfate and As species [As(III) and As(V)] under anoxic and circum-neutral pH conditions through scanning transmission electron microscopy (STEM) coupled with energy-dispersive X-ray (EDX) spectroscopy and combined it with synchrotron-based X-ray total scattering, pair distribution function (PDF) analysis, and As K-edge X-ray absorption spectroscopy (XAS). Our highly spatially resolved STEM-EDX data revealed that the preferred adsorption sites of both As(III) and As(V) are at GR crystal edges. Combining this data with differential PDF and XAS allowed us to conclude that As adsorption occurs primarily as bidentate binuclear (2C) inner-sphere surface complexes. In the As(III)-reacted GR sulfate, no secondary Fe-As phases were observed. However, authigenic parasymplesite (ferrous arsenate nanophase), exhibiting a threadlike morphology, formed in the As(V)-reacted GR sulfate and acts as an additional immobilization pathway for As(V) (∼87% of immobilized As). We demonstrate that only by combining high-resolution STEM imaging and EDX mapping with the bulk (differential) PDF and extended X-ray absorption fine structure (EXAFS) data can one truly determine the de facto As binding nature on GR surfaces. More importantly, these new insights into As-GR interaction mechanisms highlight the impact of GR phases on As sequestration in anoxic subsurface environments.


Asunto(s)
Arsénico , Adsorción , Compuestos Férricos , Sulfatos , Espectroscopía de Absorción de Rayos X
3.
Philos Trans A Math Phys Eng Sci ; 378(2186): 20190601, 2020 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-33100161

RESUMEN

We review the use of transmission electron microscopy (TEM) and associated techniques for the analysis of beam-sensitive materials and complex, multiphase systems in-situ or close to their native state. We focus on materials prone to damage by radiolysis and explain that this process cannot be eliminated or switched off, requiring TEM analysis to be done within a dose budget to achieve an optimum dose-limited resolution. We highlight the importance of determining the damage sensitivity of a particular system in terms of characteristic changes that occur on irradiation under both an electron fluence and flux by presenting results from a series of molecular crystals. We discuss the choice of electron beam accelerating voltage and detectors for optimizing resolution and outline the different strategies employed for low-dose microscopy in relation to the damage processes in operation. In particular, we discuss the use of scanning TEM (STEM) techniques for maximizing information content from high-resolution imaging and spectroscopy of minerals and molecular crystals. We suggest how this understanding can then be carried forward for in-situ analysis of samples interacting with liquids and gases, provided any electron beam-induced alteration of a specimen is controlled or used to drive a chosen reaction. Finally, we demonstrate that cryo-TEM of nanoparticle samples snap-frozen in vitreous ice can play a significant role in benchmarking dynamic processes at higher resolution. This article is part of a discussion meeting issue 'Dynamic in situ microscopy relating structure and function'.

4.
Nat Commun ; 14(1): 1502, 2023 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-36932076

RESUMEN

Neutrophilic inflammation is a hallmark of many monogenic autoinflammatory diseases; pathomechanisms that regulate extravasation of damaging immune cells into surrounding tissues are poorly understood. Here we identified three unrelated boys with perinatal-onset of neutrophilic cutaneous small vessel vasculitis and systemic inflammation. Two patients developed liver fibrosis in their first year of life. Next-generation sequencing identified two de novo truncating variants in the Src-family tyrosine kinase, LYN, p.Y508*, p.Q507* and a de novo missense variant, p.Y508F, that result in constitutive activation of Lyn kinase. Functional studies revealed increased expression of ICAM-1 on induced patient-derived endothelial cells (iECs) and of ß2-integrins on patient neutrophils that increase neutrophil adhesion and vascular transendothelial migration (TEM). Treatment with TNF inhibition improved systemic inflammation; and liver fibrosis resolved on treatment with the Src kinase inhibitor dasatinib. Our findings reveal a critical role for Lyn kinase in modulating inflammatory signals, regulating microvascular permeability and neutrophil recruitment, and in promoting hepatic fibrosis.


Asunto(s)
Células Endoteliales , Vasculitis , Familia-src Quinasas , Humanos , Dasatinib , Células Endoteliales/metabolismo , Inflamación/metabolismo , Neutrófilos/metabolismo , Fosforilación , Familia-src Quinasas/genética , Familia-src Quinasas/metabolismo , Vasculitis/genética
5.
J Nurses Staff Dev ; 28(4): 186-90, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22821022

RESUMEN

Critical care pharmacology education is crucial to safe patient care for nurses orienting to specialized areas. Although traditionally taught as a classroom lecture, it is important to consider effectiveness of alternative methods for education. This study provided experimentally derived evidence regarding effectiveness of blended versus traditional lecture for critical care pharmacology education. Regardless of learner demographics, the findings determined no significant differences in cognitive learning outcomes or learner satisfaction between blended versus lecture formats.


Asunto(s)
Instrucción por Computador/métodos , Educación a Distancia/métodos , Personal de Enfermería/educación , Evaluación de Programas y Proyectos de Salud , Desarrollo de Personal/estadística & datos numéricos , Enseñanza , Adulto , Competencia Clínica/estadística & datos numéricos , Grupos Control , Cuidados Críticos/psicología , Educación en Enfermería/estadística & datos numéricos , Tecnología Educacional/organización & administración , Femenino , Grupos Focales , Humanos , Aprendizaje , Masculino , North Carolina , Evaluación en Enfermería , Personal de Enfermería/psicología , Satisfacción Personal , Farmacología Clínica/educación , Encuestas y Cuestionarios , Factores de Tiempo
6.
Chem Mater ; 34(11): 4910-4923, 2022 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-35722202

RESUMEN

Incorporation of guest additives within inorganic single crystals offers a unique strategy for creating nanocomposites with tailored properties. While anionic additives have been widely used to control the properties of crystals, their effective incorporation remains a key challenge. Here, we show that cationic additives are an excellent alternative for the synthesis of nanocomposites, where they are shown to deliver exceptional levels of incorporation of up to 70 wt % of positively charged amino acids, polymer particles, gold nanoparticles, and silver nanoclusters within inorganic single crystals. This high additive loading endows the nanocomposites with new functional properties, including plasmon coupling, bright fluorescence, and surface-enhanced Raman scattering (SERS). Cationic additives are also shown to outperform their acidic counterparts, where they are highly active in a wider range of crystal systems, owing to their outstanding colloidal stability in the crystallization media and strong affinity for the crystal surfaces. This work demonstrates that although often overlooked, cationic additives can make valuable crystallization additives to create composite materials with tailored composition-structure-property relationships. This versatile and straightforward approach advances the field of single-crystal composites and provides exciting prospects for the design and fabrication of new hybrid materials with tunable functional properties.

7.
Cell Metab ; 3(1): 35-45, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16399503

RESUMEN

The C57BL/6J mouse displays glucose intolerance and reduced insulin secretion. QTL mapping identified Nicotinamide Nucleotide Transhydrogenase (Nnt), a nuclear-encoded mitochondrial protein thought to be involved in free radical detoxification, as a candidate gene. To investigate its functional role, we used siRNA to knock down Nnt in insulin-secreting MIN6 cells. This produced a dramatic reduction in insulin secretion and the rise in [Ca2+]i evoked by glucose, but not tolbutamide. We identified two ENU-induced point mutations in Nnt (N68K, G745D). Nnt mutant mice were glucose intolerant and secreted less insulin during a glucose tolerance test. Isolated islets showed impaired insulin secretion in response to glucose, but not to tolbutamide, and glucose failed to enhance ATP levels. Glucose utilization and production of reactive oxygen species were increased in Nnt beta cells. We hypothesize that Nnt mutations/deletion uncouple beta cell mitochondrial metabolism leading to less ATP production, enhanced KATP channel activity, and consequently impaired insulin secretion.


Asunto(s)
Insulina/metabolismo , Proteínas Mitocondriales/fisiología , NADP Transhidrogenasas/fisiología , Adenosina Trifosfato/metabolismo , Animales , Calcio/metabolismo , Línea Celular , Femenino , Glucosa/metabolismo , Intolerancia a la Glucosa/genética , Intolerancia a la Glucosa/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Ratones Obesos , Proteínas Mitocondriales/deficiencia , Proteínas Mitocondriales/genética , NADP Transhidrogenasas/deficiencia , NADP Transhidrogenasas/genética , Canales de Potasio/metabolismo , ARN Interferente Pequeño/farmacología , Especies Reactivas de Oxígeno/metabolismo
8.
Sci Total Environ ; 648: 1161-1170, 2019 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-30340262

RESUMEN

Arsenic (As) contamination in groundwater is a significant health and environmental concern worldwide because of its wide distribution and toxicity. The fate and mobility of As is greatly influenced by its interaction with redox-active mineral phases, among which green rust (GR), an FeII-FeIII layered double hydroxide mineral, plays a crucial role. However, the controlling parameters of As uptake by GR are not yet fully understood. To fill this gap, we determined the interfacial reactions between GR sulfate (GRSO4) and aqueous inorganic As(III) and As(V) through batch adsorption experiments, under environmentally-relevant groundwater conditions. Our data showed that, under anoxic conditions, GRSO4 is a stable and effective mineral adsorbent for the removal of As(III) and As(V). At an initial concentration of 10 mg L-1, As(III) removal was higher at alkaline pH conditions (~95% removal at pH 9) while As(V) was more efficiently removed at near-neutral conditions (>99% at pH 7). The calculated maximum As adsorption capacities on GRSO4 were 160 mg g-1 (pH 8-9) for As(III) and 105 mg g-1 (pH 7) for As(V). The presence of other common groundwater ions such as Mg2+ and PO43- reduces the efficiency of As removal, especially at high ionic strengths. Long-term batch adsorption experiments (up to 90 days) revealed that As-interacted GRSO4 remained stable, with no mineral transformation or release of adsorbed As species. Overall, our work shows that GRSO4 is one of the most effective As adsorbents among iron (oxyhydr)oxide phases.

9.
ACS Appl Mater Interfaces ; 11(44): 41676-41687, 2019 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-31609570

RESUMEN

In wind turbine gearboxes, (near-)surface initiated fatigue is attributed to be the primary failure mechanism. In this work, the surface fatigue of a hydrogenated tungsten carbide/amorphous carbon (WC/aC:H) thin-film was tested under severe cyclic tribo-contact using polyalphaolefin (PAO) and PAO + zinc dialkyldithiophosphate (ZDDP) lubricants. The film was characterized in terms of its structure and chemistry using X-ray diffraction, analytical transmission electron microscopy, including electron energy loss spectroscopy (EELS), as well as X-ray photoelectron spectroscopy (XPS). The multilayer carbon thin-film exhibited promising surface fatigue performance showing a slight change in the hybridization state of the aC:H matrix. Dehydrogenation of the thin-film and subsequent transformation of cleaved C-H bonds to nonplanar sp2 carbon rings were inferred from EELS and XPS results. While tribo-induced changes to the aC:H matrix were not influenced by a nanometer-thick ZDDP reaction-film, the rate of oxidation of WC and its oxidation state were affected. While accelerating surface fatigue on a steel surface, the ZDDP-tribofilm protected the WC/aC:H film from surface fatigue. In contrast to the formation of polyphosphates from ZDDP molecules on steel surfaces, it appeared that on the WC/aC:H thin film surface, ZDDP molecules decompose to ZnO, suppressing the oxidative degradation of WC.

10.
Nanoscale ; 11(14): 6939-6951, 2019 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-30916071

RESUMEN

Mesoporous phosphates are a group of nanostructured materials with promising applications, particularly in biomedicine and catalysis. However, their controlled synthesis via conventional template-based routes presents a number of challenges and limitations. Here, we show how to synthesize a mesoporous magnesium phosphate with a high surface area and a well-defined pore structure through thermal decomposition of a crystalline struvite (MgNH4PO4·6H2O) precursor. In a first step, struvite crystals with various morphologies and sizes, ranging from a few micrometers to several millimeters, had been synthesized from supersaturated aqueous solutions (saturation index (SI) between 0.5 and 4) at ambient pressure and temperature conditions. Afterwards, the crystals were thermally treated at 70-250 °C leading to the release of structurally bound water (H2O) and ammonia (NH3). By combining thermogravimetric analyses (TGA), scanning and transmission electron microscopy (SEM, TEM), N2 sorption analyses and small- and wide-angle X-ray scattering (SAXS/WAXS) we show that this decomposition process results in a pseudomorphic transformation of the original struvite into an amorphous Mg-phosphate. Of particular importance is the fact that the final material is characterized by a very uniform mesoporous structure with 2-5 nm wide pore channels, a large specific surface area of up to 300 m2 g-1 and a total pore volume of up to 0.28 cm3 g-1. Our struvite decomposition method is well controllable and reproducible and can be easily extended to the synthesis of other mesoporous phosphates. In addition, the so produced mesoporous material is a prime candidate for use in biomedical applications considering that magnesium phosphate is a widely used, non-toxic substance that has already shown excellent biocompatibility and biodegradability.

11.
Diabetes ; 55(7): 2153-6, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16804088

RESUMEN

The C57BL/6J mouse displays glucose intolerance and reduced insulin secretion. The genetic locus underlying this phenotype was mapped to nicotinamide nucleotide transhydrogenase (Nnt) on mouse chromosome 13, a nuclear-encoded mitochondrial protein involved in beta-cell mitochondrial metabolism. C57BL/6J mice have a naturally occurring in-frame five-exon deletion in Nnt that removes exons 7-11. This results in a complete absence of Nnt protein in these mice. We show that transgenic expression of the entire Nnt gene in C57BL/6J mice rescues their impaired insulin secretion and glucose-intolerant phenotype. This study provides direct evidence that Nnt deficiency results in defective insulin secretion and inappropriate glucose homeostasis in male C57BL/6J mice.


Asunto(s)
Intolerancia a la Glucosa/genética , NADP Transhidrogenasas/genética , Sitios de Carácter Cuantitativo , Animales , Glucemia/metabolismo , Cromosomas Artificiales Bacterianos , Exones , Intolerancia a la Glucosa/enzimología , Insulina/sangre , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Ratones Transgénicos , NADP Transhidrogenasas/deficiencia , Eliminación de Secuencia
12.
Diabetes ; 57(8): 2234-44, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18477811

RESUMEN

OBJECTIVES: To identify, map, clone, and functionally validate a novel mouse model for impaired glucose tolerance and insulin secretion. RESEARCH DESIGN AND METHODS: Haploinsufficiency of the insulin receptor and associated mild insulin resistance has been used to sensitize an N-ethyl-N-nitrosourea (ENU) screen to identify novel mutations resulting in impaired glucose tolerance and diabetes. The new impaired glucose tolerance 4 (IGT4) model was selected using an intraperitoneal glucose tolerance test and inheritance of the phenotype confirmed by generation of backcross progeny. Segregation of the phenotype was correlated with genotype information to map the location of the gene and candidates sequenced for mutations. The function of the SRY-related high mobility group (HMG)-box 4 (Sox4) gene in insulin secretion was tested using another ENU allele and by small interfering RNA silencing in insulinoma cells. RESULTS: We describe two allelic autosomal dominant mutations in the highly conserved HMG box of the transcription factor Sox4. Previously associated with pancreas development, Sox4 mutations in the adult mouse result in an insulin secretory defect, which exhibits impaired glucose tolerance in association with insulin receptor(+/-)-induced insulin resistance. Elimination of the Sox4 transcript in INS1 and Min6 cells resulted in the abolition of glucose-stimulated insulin release similar to that observed for silencing of the key metabolic enzyme glucokinase. Intracellular calcium measurements in treated cells indicate that this defect lies downstream of the ATP-sensitive K(+) channel (K(ATP) channel) and calcium influx. CONCLUSIONS: IGT4 represents a novel digenic model of insulin resistance coupled with an insulin secretory defect. The Sox4 gene has a role in insulin secretion in the adult beta-cell downstream of the K(ATP) channel.


Asunto(s)
Intolerancia a la Glucosa/fisiopatología , Proteínas del Grupo de Alta Movilidad/fisiología , Insulina/metabolismo , Transactivadores/fisiología , Animales , Calcio/metabolismo , Línea Celular Tumoral , Células Cultivadas , Femenino , Prueba de Complementación Genética , Genotipo , Glucosa/farmacología , Intolerancia a la Glucosa/genética , Prueba de Tolerancia a la Glucosa , Proteínas del Grupo de Alta Movilidad/genética , Inmunohistoquímica , Técnicas In Vitro , Secreción de Insulina , Islotes Pancreáticos/efectos de los fármacos , Islotes Pancreáticos/metabolismo , Masculino , Ratones , Ratones Noqueados , Microscopía Electrónica de Transmisión , Mutación , Fenotipo , ARN Interferente Pequeño/genética , Receptor de Insulina/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Transcripción SOXC , Transactivadores/genética
13.
Sultan Qaboos Univ Med J ; 10(1): 133-5, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21509096
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA