Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Biol Chem ; 292(14): 5760-5769, 2017 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-28209710

RESUMEN

Blood loss is prevented by the multidomain glycoprotein von Willebrand factor (VWF), which binds exposed collagen at damaged vessels and captures platelets. VWF is regulated by the metalloprotease ADAMTS13, which in turn is conformationally activated by VWF. To delineate the structural requirements for VWF-mediated conformational activation of ADAMTS13, we performed binding and functional studies with a panel of truncated ADAMTS13 variants. We demonstrate that both the isolated CUB1 and CUB2 domains in ADAMTS13 bind to the spacer domain exosite of a truncated ADAMTS13 variant, MDTCS (KD of 135 ± 1 0.1 nm and 86.9 ± 9.0 nm, respectively). However, only the CUB1 domain inhibited proteolytic activity of MDTCS. Moreover, ADAMTS13ΔCUB2, unlike ADAMTS13ΔCUB1-2, exhibited activity similar to wild-type ADAMTS13 and could be activated by VWF D4-CK. The CUB2 domain is, therefore, not essential for maintaining the inactive conformation of ADAMTS13. Both CUB domains could bind to the VWF D4-CK domain fragment (KD of 53.7 ± 2.1 nm and 84.3 ± 2.0 nm, respectively). However, deletion of both CUB domains did not prevent VWF D4-CK binding, suggesting that competition for CUB-domain binding to the spacer domain is not the dominant mechanism behind the conformational activation. ADAMTS13ΔTSP8-CUB2 could no longer bind to VWF D4-CK, and deletion of TSP8 abrogated ADAMTS13 conformational activation. These findings support an ADAMTS13 activation model in which VWF D4-CK engages the TSP8-CUB2 domains, inducing the conformational change that disrupts the CUB1-spacer domain interaction and thereby activates ADAMTS13.


Asunto(s)
Proteína ADAMTS13/química , Modelos Químicos , Factor de von Willebrand/química , Proteína ADAMTS13/metabolismo , Células HEK293 , Humanos , Unión Proteica/fisiología , Dominios Proteicos , Factor de von Willebrand/metabolismo
2.
EMBO J ; 30(12): 2431-44, 2011 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-21602789

RESUMEN

Regulated alternative polyadenylation is an important feature of gene expression, but how gene transcription rate affects this process remains to be investigated. polo is a cell-cycle gene that uses two poly(A) signals in the 3' untranslated region (UTR) to produce alternative messenger RNAs that differ in their 3'UTR length. Using a mutant Drosophila strain that has a lower transcriptional elongation rate, we show that transcription kinetics can determine alternative poly(A) site selection. The physiological consequences of incorrect polo poly(A) site choice are of vital importance; transgenic flies lacking the distal poly(A) signal cannot produce the longer transcript and die at the pupa stage due to a failure in the proliferation of the precursor cells of the abdomen, the histoblasts. This is due to the low translation efficiency of the shorter transcript produced by proximal poly(A) site usage. Our results show that correct polo poly(A) site selection functions to provide the correct levels of protein expression necessary for histoblast proliferation, and that the kinetics of RNA polymerase II have an important role in the mechanism of alternative polyadenylation.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Poli A/metabolismo , Poliadenilación/genética , Proteínas Serina-Treonina Quinasas/metabolismo , ARN Polimerasa II/metabolismo , Transducción de Señal/genética , Regiones no Traducidas 3'/genética , Animales , Animales Modificados Genéticamente , Proliferación Celular , Supervivencia Celular/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiología , Drosophila melanogaster/embriología , Variación Genética/genética , Cinética , Poli A/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/fisiología , ARN Polimerasa II/biosíntesis , ARN Polimerasa II/genética
4.
J Biol Chem ; 288(40): 29151-9, 2013 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-23963456

RESUMEN

Peroxisomal matrix proteins are synthesized on cytosolic ribosomes and post-translationally targeted to the organelle by PEX5, the peroxisomal shuttling receptor. The pathway followed by PEX5 during this process is known with reasonable detail. After recognizing cargo proteins in the cytosol, the receptor interacts with the peroxisomal docking/translocation machinery, where it gets inserted; PEX5 is then monoubiquitinated, extracted back to the cytosol and, finally, deubiquitinated. However, despite this information, the exact step of this pathway where cargo proteins are translocated across the organelle membrane is still ill-defined. In this work, we used an in vitro import system to characterize the translocation mechanism of a matrix protein possessing a type 1 targeting signal. Our results suggest that translocation of proteins across the organelle membrane occurs downstream of a reversible docking step and upstream of the first cytosolic ATP-dependent step (i.e. before ubiquitination of PEX5), concomitantly with the insertion of the receptor into the docking/translocation machinery.


Asunto(s)
Peroxisomas/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Transducción de Señal , Adenosina Trifosfato/metabolismo , Animales , Proteínas Portadoras/metabolismo , Citosol/metabolismo , Humanos , Ratones , Modelos Biológicos , Receptor de la Señal 1 de Direccionamiento al Peroxisoma , Señales de Clasificación de Proteína , Transporte de Proteínas , Fracciones Subcelulares/metabolismo , Temperatura
5.
J Biol Chem ; 287(16): 12815-27, 2012 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-22371489

RESUMEN

Peroxin 5 (PEX5), the peroxisomal protein shuttling receptor, binds newly synthesized peroxisomal matrix proteins in the cytosol and promotes their translocation across the organelle membrane. During the translocation step, PEX5 itself becomes inserted into the peroxisomal docking/translocation machinery. PEX5 is then monoubiquitinated at a conserved cysteine residue and extracted back into the cytosol in an ATP-dependent manner. We have previously shown that the ubiquitin-PEX5 thioester conjugate (Ub-PEX5) released into the cytosol can be efficiently disrupted by physiological concentrations of glutathione, raising the possibility that a fraction of Ub-PEX5 is nonenzymatically deubiquitinated in vivo. However, data suggesting that Ub-PEX5 is also a target of a deubiquitinase were also obtained in that work. Here, we used an unbiased biochemical approach to identify this enzyme. Our results suggest that ubiquitin-specific protease 9X (USP9X) is by far the most active deubiquitinase acting on Ub-PEX5, both in female rat liver and HeLa cells. We also show that USP9X is an elongated monomeric protein with the capacity to hydrolyze thioester, isopeptide, and peptide bonds. The strategy described here will be useful in identifying deubiquitinases acting on other ubiquitin conjugates.


Asunto(s)
Peroxisomas/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Ubiquitina Tiolesterasa/metabolismo , Ubiquitina/metabolismo , Animales , Citosol/enzimología , Activación Enzimática/fisiología , Ésteres/metabolismo , Femenino , Células HEK293 , Células HeLa , Humanos , Hidrólisis , Hígado/enzimología , Masculino , Receptor de la Señal 1 de Direccionamiento al Peroxisoma , Conejos , Ratas , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/aislamiento & purificación , Especificidad por Sustrato/fisiología , Ubiquitina Tiolesterasa/aislamiento & purificación
6.
J Biol Chem ; 286(47): 40509-19, 2011 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-21976670

RESUMEN

Newly synthesized peroxisomal matrix proteins are targeted to the organelle by PEX5. PEX5 has a dual role in this process. First, it acts as a soluble receptor recognizing these proteins in the cytosol. Subsequently, at the peroxisomal docking/translocation machinery, PEX5 promotes their translocation across the organelle membrane. Despite significant advances made in recent years, several aspects of this pathway remain unclear. Two important ones regard the formation and disruption of the PEX5-cargo protein interaction in the cytosol and at the docking/translocation machinery, respectively. Here, we provide data on the interaction of PEX5 with catalase, a homotetrameric enzyme in its native state. We found that PEX5 interacts with monomeric catalase yielding a stable protein complex; no such complex was detected with tetrameric catalase. Binding of PEX5 to monomeric catalase potently inhibits its tetramerization, a property that depends on domains present in both the N- and C-terminal halves of PEX5. Interestingly, the PEX5-catalase interaction is disrupted by the N-terminal domain of PEX14, a component of the docking/translocation machinery. One or two of the seven PEX14-binding diaromatic motifs present in the N-terminal half of PEX5 are probably involved in this phenomenon. These results suggest the following: 1) catalase domain(s) involved in the interaction with PEX5 are no longer accessible upon tetramerization of the enzyme; 2) the catalase-binding interface in PEX5 is not restricted to its C-terminal peroxisomal targeting sequence type 1-binding domain and also involves PEX5 N-terminal domain(s); and 3) PEX14 participates in the cargo protein release step.


Asunto(s)
Catalasa/química , Catalasa/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Multimerización de Proteína/efectos de los fármacos , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores Citoplasmáticos y Nucleares/farmacología , Proteínas Represoras/química , Proteínas Represoras/metabolismo , Animales , Concentración 50 Inhibidora , Membranas Intracelulares/efectos de los fármacos , Membranas Intracelulares/metabolismo , Ratones , Receptor de la Señal 1 de Direccionamiento al Peroxisoma , Peroxisomas/efectos de los fármacos , Peroxisomas/metabolismo , Unión Proteica , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Transporte de Proteínas/efectos de los fármacos , Conejos , Receptores Citoplasmáticos y Nucleares/química
7.
Front Oncol ; 12: 880552, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35712511

RESUMEN

Background: Mutations in the tumor suppressor gene Adenomatous Polyposis Coli (APC) are found in 80% of sporadic colorectal cancer (CRC) tumors and are also responsible for the inherited form of CRC, Familial adenomatous polyposis (FAP). Methods: To identify novel therapeutic strategies for the treatment of APC mutated CRC, we generated a drug screening platform that incorporates a human cellular model of APC mutant CRC using CRISPR-cas9 gene editing and performed an FDA-approved drug screen targeting over 1000 compounds. Results: We have identified the group of HMG-CoA Reductase (HMGCR) inhibitors known as statins, which cause a significantly greater loss in cell viability in the APC mutated cell lines and in in vivo APC mutated patient derived xenograft (PDX) models, compared to wild-type APC cells. Mechanistically, our data reveals this new synthetic lethal relationship is a consequence of decreased Wnt signalling and, ultimately, a reduction in the level of expression of the anti-apoptotic protein Survivin, upon statin treatment in the APC-mutant cells only. This mechanism acts via a Rac1 mediated control of beta-catenin. Conclusion: Significantly, we have identified a novel synthetic lethal dependence between APC mutations and statin treatment, which could potentially be exploited for the treatment of APC mutated cancers.

8.
Cell Death Dis ; 10(11): 795, 2019 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-31641109

RESUMEN

The DNA mismatch repair (MMR) pathway is responsible for the repair of base-base mismatches and insertion/deletion loops that arise during DNA replication. MMR deficiency is currently estimated to be present in 15-17% of colorectal cancer cases and 30% of endometrial cancers. MLH1 is one of the key proteins involved in the MMR pathway. Inhibition of a number of mitochondrial genes, including POLG and PINK1 can induce synthetic lethality in MLH1-deficient cells. Here we demonstrate for the first time that loss of MLH1 is associated with a deregulated mitochondrial metabolism, with reduced basal oxygen consumption rate and reduced spare respiratory capacity. Furthermore, MLH1-deficient cells display a significant reduction in activity of the respiratory chain Complex I. As a functional consequence of this perturbed mitochondrial metabolism, MLH1-deficient cells have a reduced anti-oxidant response and show increased sensitivity to reactive oxidative species (ROS)-inducing drugs. Taken together, our results provide evidence for an intrinsic mitochondrial dysfunction in MLH1-deficient cells and a requirement for MLH1 in the regulation of mitochondrial function.


Asunto(s)
Mitocondrias/metabolismo , Homólogo 1 de la Proteína MutL/deficiencia , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Reparación de la Incompatibilidad de ADN , Complejo I de Transporte de Electrón/antagonistas & inhibidores , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/metabolismo , Neoplasias Endometriales/genética , Neoplasias Endometriales/metabolismo , Neoplasias Endometriales/patología , Femenino , Células HCT116 , Células HT29 , Humanos , Masculino , Mitocondrias/genética , Homólogo 1 de la Proteína MutL/genética , Homólogo 1 de la Proteína MutL/metabolismo , Mutación , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Rotenona/farmacología , Transfección
9.
Clin Cancer Res ; 23(11): 2880-2890, 2017 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-27913567

RESUMEN

Purpose: The DNA mismatch repair (MMR) pathway is required for the maintenance of genome stability. Unsurprisingly, mutations in MMR genes occur in a wide range of different cancers. Studies thus far have largely focused on specific tumor types or MMR mutations; however, it is becoming increasingly clear that a therapy targeting MMR deficiency in general would be clinically very beneficial.Experimental Design: Based on a drug-repositioning approach, we screened a large panel of cell lines with various MMR deficiencies from a range of different tumor types with a compound drug library of previously approved drugs. We have identified the potassium-sparing diuretic drug triamterene, as a novel sensitizing agent in MMR-deficient tumor cells, in vitro and in vivoResults: The selective tumor cell cytotoxicity of triamterene occurs through its antifolate activity and depends on the activity of the folate synthesis enzyme thymidylate synthase. Triamterene leads to a thymidylate synthase-dependent differential increase in reactive oxygen species in MMR-deficient cells, ultimately resulting in an increase in DNA double-strand breaks.Conclusions: Conclusively, our data reveal a new drug repurposing and novel therapeutic strategy that has potential for the treatment of MMR deficiency in a range of different tumor types and could significantly improve patient survival. Clin Cancer Res; 23(11); 2880-90. ©2016 AACR.


Asunto(s)
Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Colorrectales/tratamiento farmacológico , Roturas del ADN de Doble Cadena/efectos de los fármacos , Reparación de la Incompatibilidad de ADN/genética , Síndromes Neoplásicos Hereditarios/tratamiento farmacológico , Triantereno/farmacología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Reposicionamiento de Medicamentos/métodos , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Síndromes Neoplásicos Hereditarios/genética , Síndromes Neoplásicos Hereditarios/patología
10.
Cell Rep ; 16(6): 1604-1613, 2016 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-27452468

RESUMEN

Argininosuccinate synthase 1 (ASS1) is the rate-limiting enzyme for arginine biosynthesis. ASS1 expression is lost in a range of tumor types, including 50% of malignant pleural mesotheliomas. Starving ASS1-deficient cells of arginine with arginine blockers such as ADI-PEG20 can induce selective lethality and has shown great promise in the clinical setting. We have generated a model of ADI-PEG20 resistance in mesothelioma cells. This resistance is mediated through re-expression of ASS1 via demethylation of the ASS1 promoter. Through coordinated transcriptomic and metabolomic profiling, we have shown that ASS1-deficient cells have decreased levels of acetylated polyamine metabolites, together with a compensatory increase in the expression of polyamine biosynthetic enzymes. Upon arginine deprivation, polyamine metabolites are decreased in the ASS1-deficient cells and in plasma isolated from ASS1-deficient mesothelioma patients. We identify a synthetic lethal dependence between ASS1 deficiency and polyamine metabolism, which could potentially be exploited for the treatment of ASS1-negative cancers.


Asunto(s)
Argininosuccinato Sintasa/deficiencia , Argininosuccinato Sintasa/genética , Hidrolasas/genética , Poliaminas/metabolismo , Arginina/metabolismo , Línea Celular Tumoral , Metilación de ADN/genética , Humanos , Neoplasias Pulmonares/genética , Mesotelioma/genética , Mesotelioma Maligno , Polietilenglicoles , Regiones Promotoras Genéticas/genética
11.
Open Biol ; 5(4): 140236, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25854684

RESUMEN

Peroxisomal matrix proteins are synthesized on cytosolic ribosomes and transported by the shuttling receptor PEX5 to the peroxisomal membrane docking/translocation machinery, where they are translocated into the organelle matrix. Under certain experimental conditions this protein import machinery has the remarkable capacity to accept already oligomerized proteins, a property that has heavily influenced current models on the mechanism of peroxisomal protein import. However, whether or not oligomeric proteins are really the best and most frequent clients of this machinery remain unclear. In this work, we present three lines of evidence suggesting that the peroxisomal import machinery displays a preference for monomeric proteins. First, in agreement with previous findings on catalase, we show that PEX5 binds newly synthesized (monomeric) acyl-CoA oxidase 1 (ACOX1) and urate oxidase (UOX), potently inhibiting their oligomerization. Second, in vitro import experiments suggest that monomeric ACOX1 and UOX are better peroxisomal import substrates than the corresponding oligomeric forms. Finally, we provide data strongly suggesting that although ACOX1 lacking a peroxisomal targeting signal can be imported into peroxisomes when co-expressed with ACOX1 containing its targeting signal, this import pathway is inefficient.


Asunto(s)
Citosol/metabolismo , Modelos Biológicos , Peroxisomas/metabolismo , Transducción de Señal , Acil-CoA Oxidasa/química , Acil-CoA Oxidasa/genética , Acil-CoA Oxidasa/metabolismo , Animales , Western Blotting , Células COS , Chlorocebus aethiops , Humanos , Ratones , Microscopía Fluorescente , Mutación , Receptor de la Señal 1 de Direccionamiento al Peroxisoma , Unión Proteica , Multimerización de Proteína , Transporte de Proteínas , Ratas , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Urato Oxidasa/química , Urato Oxidasa/genética , Urato Oxidasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA