Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Transl Med ; 12: 41, 2014 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-24507750

RESUMEN

BACKGROUND: Gastrointestinal stromal tumor (GIST) is the most common sarcoma and its treatment with imatinib has served as the paradigm for developing targeted anti-cancer therapies. Despite this success, imatinib-resistance has emerged as a major problem and therefore, the clinical efficacy of other drugs has been investigated. Unfortunately, most clinical trials have failed to identify efficacious drugs despite promising in vitro data and pathological responses in subcutaneous xenografts. We hypothesized that it was feasible to develop orthotopic patient-derived xenografts (PDXs) from resected GIST that could recapitulate the genetic heterogeneity and biology of the human disease. METHODS: Fresh tumor tissue from three patients with pathologically confirmed GISTs was obtained immediately following tumor resection. Tumor fragments (4.2-mm3) were surgically xenografted into the liver, gastric wall, renal capsule, and pancreas of immunodeficient mice. Tumor growth was serially assessed with ultrasonography (US) every 3-4 weeks. Tumors were also evaluated with positron emission tomography (PET). Animals were sacrificed when they became moribund or their tumors reached a threshold size of 2500-mm3. Tumors were subsequently passaged, as well as immunohistochemically and histologically analyzed. RESULTS: Herein, we describe the first model for generating orthotopic GIST PDXs. We have successfully xenografted three unique KIT-mutated tumors into a total of 25 mice with an overall success rate of 84% (21/25). We serially followed tumor growth with US to describe the natural history of PDX growth. Successful PDXs resulted in 12 primary xenografts in NOD-scid gamma or NOD-scid mice while subsequent successful passages resulted in 9 tumors. At a median of 7.9 weeks (range 2.9-33.1 weeks), tumor size averaged 473 ± 695-mm³ (median 199-mm3, range 12.6-2682.5-mm³) by US. Furthermore, tumor size on US within 14 days of death correlated with gross tumor size on necropsy. We also demonstrated that these tumors are FDG-avid on PET imaging, while immunohistochemically and histologically the PDXs resembled the primary tumors. CONCLUSIONS: We report the first orthotopic model of human GIST using patient-derived tumor tissue. This novel, reproducible in vivo model of human GIST may enhance the study of GIST biology, biomarkers, personalized cancer treatments, and provide a preclinical platform to evaluate new therapeutic agents for GIST.


Asunto(s)
Tumores del Estroma Gastrointestinal/patología , Ensayos Antitumor por Modelo de Xenoinjerto , Anciano , Animales , Demografía , Progresión de la Enfermedad , Femenino , Fluorodesoxiglucosa F18 , Tumores del Estroma Gastrointestinal/diagnóstico por imagen , Humanos , Masculino , Ratones , Ratones SCID , Persona de Mediana Edad , Tomografía de Emisión de Positrones , Ultrasonografía
2.
Carcinogenesis ; 32(8): 1151-6, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21565828

RESUMEN

The RON receptor tyrosine kinase (RTK) is overexpressed in the majority of pancreatic cancers, yet its role in pancreatic cancer cell biology remains to be clarified. Recent work in childhood sarcoma identified RON as a mediator of resistance to insulin-like growth factor receptor (IGF1-R)-directed therapy. To better understand RON function in pancreatic cancer cells, we sought to identify novel RON interactants. Using multidimensional protein identification analysis, IGF-1R was identified and confirmed to interact with RON in pancreatic cancer cell lines. IGF-1 induces rapid phosphorylation of RON, but RON signaling did not activate IGF-1R indicating unidirectional signaling between these RTKs. We next demonstrate that IGF-1 induces pancreatic cancer cell migration that is RON dependent, as inhibition of RON signaling by either shRNA-mediated RON knockdown or by a RON kinase inhibitor abrogated IGF-1 induced wound closure in a scratch assay. In pancreatic cancer cells, unlike childhood sarcoma, STAT-3, rather than RPS6, is activated in response to IGF-1, in a RON-dependent manner. The current study defines a novel interaction between RON and IGF-1R and taken together, these two studies demonstrate that RON is an important mediator of IGF1-R signaling and that this finding is consistent in both human epithelial and mesenchymal cancers. These findings demand additional investigation to determine if IGF-1R independent RON activation is associated with resistance to IGF-1R-directed therapies in vivo and to identify suitable biomarkers of activated RON signaling.


Asunto(s)
Movimiento Celular/fisiología , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Proteínas Tirosina Quinasas Receptoras/metabolismo , Receptor IGF Tipo 1/metabolismo , Transducción de Señal , Western Blotting , Adhesión Celular , Humanos , Inmunoprecipitación , Neoplasias Pancreáticas/genética , ARN Interferente Pequeño/genética , Proteínas Tirosina Quinasas Receptoras/antagonistas & inhibidores , Proteínas Tirosina Quinasas Receptoras/genética , Células Tumorales Cultivadas , Cicatrización de Heridas
3.
Nat Commun ; 12(1): 1541, 2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33750829

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is characterized by marked desmoplasia and drug resistance due, in part, to poor drug delivery to extravascular tumor tissue. Here, we report that carcinoma-associated fibroblasts (CAFs) induce ß5 integrin expression in tumor cells in a TGF-ß dependent manner, making them an efficient drug delivery target for the tumor-penetrating peptide iRGD. The capacity of iRGD to deliver conjugated and co-injected payloads is markedly suppressed when ß5 integrins are knocked out in the tumor cells. Of note, ß5 integrin knock-out in tumor cells leads to reduced disease burden and prolonged survival of the mice, demonstrating its contribution to PDAC progression. iRGD significantly potentiates co-injected chemotherapy in KPC mice with high ß5 integrin expression and may be a powerful strategy to target an aggressive PDAC subpopulation.


Asunto(s)
Cadenas beta de Integrinas/genética , Cadenas beta de Integrinas/metabolismo , Neoplasias Pancreáticas/metabolismo , Animales , Fibroblastos Asociados al Cáncer , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Progresión de la Enfermedad , Sistemas de Liberación de Medicamentos , Quimioterapia , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , Ratones Endogámicos C57BL , Oligopéptidos , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Microambiente Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto , Neoplasias Pancreáticas
4.
Oncogene ; 40(11): 1957-1973, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33603171

RESUMEN

Targeted therapies for gastrointestinal stromal tumor (GIST) are modestly effective, but GIST cannot be cured with single agent tyrosine kinase inhibitors. In this study, we sought to identify new therapeutic targets in GIST by investigating the tumor microenvironment. Here, we identified a paracrine signaling network by which cancer-associated fibroblasts (CAFs) drive GIST growth and metastasis. Specifically, CAFs isolated from human tumors were found to produce high levels of platelet-derived growth factor C (PDGFC), which activated PDGFC-PDGFRA signal transduction in GIST cells that regulated the expression of SLUG, an epithelial-mesenchymal transition (EMT) transcription factor and downstream target of PDGFRA signaling. Together, this paracrine induce signal transduction cascade promoted tumor growth and metastasis in vivo. Moreover, in metastatic GIST patients, SLUG expression positively correlated with tumor size and mitotic index. Given that CAF paracrine signaling modulated GIST biology, we directly targeted CAFs with a dual PI3K/mTOR inhibitor, which synergized with imatinib to increase tumor cell killing and in vivo disease response. Taken together, we identified a previously unappreciated cellular target for GIST therapy in order to improve disease control and cure rates.


Asunto(s)
Tumores del Estroma Gastrointestinal/genética , Linfocinas/genética , Factor de Crecimiento Derivado de Plaquetas/genética , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/genética , Factores de Transcripción de la Familia Snail/genética , Fibroblastos Asociados al Cáncer/efectos de los fármacos , Fibroblastos Asociados al Cáncer/patología , Línea Celular Tumoral , Transición Epitelial-Mesenquimal/genética , Tumores del Estroma Gastrointestinal/tratamiento farmacológico , Tumores del Estroma Gastrointestinal/patología , Humanos , Metástasis de la Neoplasia , Comunicación Paracrina/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/genética , Microambiente Tumoral/efectos de los fármacos
5.
ACS Omega ; 4(16): 17048-17059, 2019 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-31646252

RESUMEN

G protein-coupled receptors (GPCRs) are the largest family of membrane receptors and targets for approved drugs. The analysis of GPCR expression is, thus, important for drug discovery and typically involves messenger RNA (mRNA)-based methods. We compared transcriptomic complementary DNA (cDNA) (Affymetrix) microarrays, RNA sequencing (RNA-seq), and quantitative polymerase chain reaction (qPCR)-based TaqMan arrays for their ability to detect and quantify expression of endoGPCRs (nonchemosensory GPCRs with endogenous agonists). In human pancreatic cancer-associated fibroblasts, RNA-seq and TaqMan arrays yielded closely correlated values for GPCR number (∼100) and expression levels, as validated by independent qPCR. By contrast, the microarrays failed to identify ∼30 such GPCRs and generated data poorly correlated with results from those methods. RNA-seq and TaqMan arrays also yielded comparable results for GPCRs in human cardiac fibroblasts, pancreatic stellate cells, cancer cell lines, and pulmonary arterial smooth muscle cells. The magnitude of mRNA expression for several Gq/11-coupled GPCRs predicted cytosolic calcium increase and cell migration by cognate agonists. RNA-seq also revealed splice variants for endoGPCRs. Thus, RNA-seq and qPCR-based arrays are much better suited than transcriptomic cDNA microarrays for assessing GPCR expression and can yield results predictive of functional responses, findings that have implications for GPCR biology and drug discovery.

6.
Oncogene ; 38(28): 5599-5611, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30967626

RESUMEN

The MST1R (RON) kinase is overexpressed in >80% of human pancreatic cancers, but its role in pancreatic carcinogenesis is unknown. In this study, we examined the relevance of Mst1r kinase to Kras driven pancreatic carcinogenesis using genetically engineered mouse models. In the setting of mutant Kras, Mst1r overexpression increased acinar-ductal metaplasia (ADM), accelerated the progression of pancreatic intraepithelial neoplasia (PanIN), and resulted in the accumulation of (mannose receptor C type 1) MRC1+, (arginase 1) Arg+ macrophages in the tumor microenvironment. Conversely, absence of a functional Mst1r kinase slowed PanIN initiation, resulted in smaller tumors, prolonged survival and a reduced tumor-associated macrophage content. Mst1r expression was associated with increased production of its ligand Mst1, and in orthotopic models, suppression of Mst1 expression resulted in reduced tumor size, changes in macrophage polarization and enhanced T cell infiltration. This study demonstrates the functional significance of Mst1r during pancreatic cancer initiation and progression. Further, it provides proof of concept that targeting Mst1r can modulate pancreatic cancer growth and the microenvironment. This study provides further rationale for targeting Mst1r as a therapeutic strategy.


Asunto(s)
Carcinoma Ductal Pancreático/patología , Células Epiteliales/patología , Macrófagos/patología , Neoplasias Pancreáticas/patología , Proteínas Tirosina Quinasas Receptoras/metabolismo , Animales , Carcinoma Ductal Pancreático/enzimología , Progresión de la Enfermedad , Femenino , Técnicas de Silenciamiento del Gen , Humanos , Péptidos y Proteínas de Señalización Intracelular , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neoplasias Pancreáticas/enzimología , Prueba de Estudio Conceptual , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas Receptoras/genética , Transducción de Señal , Microambiente Tumoral
7.
Front Pharmacol ; 9: 431, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29872392

RESUMEN

G protein-coupled receptors (GPCRs), the largest family of targets for approved drugs, are rarely targeted for cancer treatment, except for certain endocrine and hormone-responsive tumors. Limited knowledge regarding GPCR expression in cancer cells likely has contributed to this lack of use of GPCR-targeted drugs as cancer therapeutics. We thus undertook GPCRomic studies to define the expression of endoGPCRs (which respond to endogenous molecules such as hormones, neurotransmitters and metabolites) in multiple types of cancer cells. Using TaqMan qPCR arrays to quantify the mRNA expression of ∼340 such GPCRs, we found that human chronic lymphocytic leukemia (CLL) cells/stromal cells associated with CLL, breast cancer cell lines, colon cancer cell lines, pancreatic ductal adenocarcinoma (PDAC) cells, cancer associated fibroblasts (CAFs), and PDAC tumors express 50 to >100 GPCRs, including many orphan GPCRs (which lack known physiologic agonists). Limited prior data exist regarding the expression or function of most of the highly expressed GPCRs in these cancer cells and tumors. Independent results from public cancer gene expression databases confirm the expression of such GPCRs. We propose that highly expressed GPCRs in cancer cells (for example, GPRC5A in PDAC and colon cancer cells and GPR68 in PDAC CAFs) may contribute to the malignant phenotype, serve as biomarkers and/or may be novel therapeutic targets for the treatment of cancer.

8.
Mol Cancer Ther ; 14(1): 120-8, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25392370

RESUMEN

Tumor-specific tissue-penetrating peptides deliver drugs into extravascular tumor tissue by increasing tumor vascular permeability through interaction with neuropilin (NRP). Here, we report that a prototypic tumor-penetrating peptide iRGD (amino acid sequence: CRGDKGPDC) potently inhibits spontaneous metastasis in mice. The antimetastatic effect was mediated by the NRP-binding RXXK peptide motif (CendR motif), and not by the integrin-binding RGD motif. iRGD inhibited migration of tumor cells and caused chemorepulsion in vitro in a CendR- and NRP-1-dependent manner. The peptide induced dramatic collapse of cellular processes and partial cell detachment, resulting in the repellent activity. These effects were prominently displayed when the cells were seeded on fibronectin, suggesting a role of CendR in functional regulation of integrins. The antimetastatic activity of iRGD may provide a significant additional benefit when this peptide is used for drug delivery to tumors.


Asunto(s)
Antineoplásicos/administración & dosificación , Péptidos de Penetración Celular/administración & dosificación , Sistemas de Liberación de Medicamentos/métodos , Metástasis de la Neoplasia/tratamiento farmacológico , Oligopéptidos/administración & dosificación , Neoplasias de la Próstata/tratamiento farmacológico , Animales , Antineoplásicos/farmacología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Péptidos de Penetración Celular/farmacología , Humanos , Masculino , Nanopartículas del Metal/administración & dosificación , Nanopartículas del Metal/química , Ratones , Ratones Desnudos , Neuropilina-1/metabolismo , Oligopéptidos/farmacología , Especificidad de Órganos , Plata , Ensayos Antitumor por Modelo de Xenoinjerto
9.
Pancreas ; 39(3): 301-7, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20358644

RESUMEN

OBJECTIVES: The RON receptor mediates tumorigenic phenotypes in pancreatic cancer (PC), but no investigations currently have implicated RON signaling as a regulator of angiogenesis in PC. Angiogenesis is vital to oncogenesis, and vascular endothelial growth factor (VEGF) is the most well-characterized angiogenic protein. This study sought to determine the effect of RON stimulation on in vitro angiogenesis and VEGF production in PC cell lines. METHODS: Vascular endothelial growth factor levels from conditioned media of hepatocyte growth factor-like protein-stimulated BxPC-3 and FG cells were quantitated via enzyme-linked immunosorbent assay and likewise interrogated in the presence and absence of mitogen-activated protein kinase (MAPK) and phosphatidylinositol-3-kinase/AKT inhibitors. To determine in vitro angiogenesis, human microvascular endothelial cells were subsequently exposed to the same conditioned media to assay for microtubule formation. RESULTS: RON signaling resulted in a 52% and 34% increase in VEGF levels in BxPC-3 and FG cells, respectively. Vascular endothelial growth factor secretion was inhibited with MAPK or phosphatidylinositol-3-kinase blockade in BxPC-3 cells, but only MAPK inhibition resulted in decreased VEGF production in FG cells. BxPC-3 conditioned media induced tubule formation in human microvascular endothelial cells, which was abrogated by RON inhibition. CONCLUSIONS: RON signaling results in MAPK-mediated VEGF secretion by PC cells and promotion of microtubule formation. These findings suggest another mechanism by which RON signaling may promote PC progression.


Asunto(s)
Carcinoma Ductal Pancreático/metabolismo , Neoplasias Pancreáticas/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Animales , Carcinoma Ductal Pancreático/tratamiento farmacológico , Línea Celular Tumoral , Medios de Cultivo Condicionados/metabolismo , Medios de Cultivo Condicionados/farmacología , Humanos , Ratones , Proteínas Quinasas Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Neovascularización Patológica/metabolismo , Neoplasias Pancreáticas/tratamiento farmacológico , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factor A de Crecimiento Endotelial Vascular/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA