RESUMEN
Fine root lifespan is a critical trait associated with contrasting root strategies of resource acquisition and protection. Yet, its position within the multidimensional "root economics space" synthesizing global root economics strategies is largely uncertain, and it is rarely represented in frameworks integrating plant trait variations. Here, we compiled the most comprehensive dataset of absorptive median root lifespan (MRL) data including 98 observations from 79 woody species using (mini-)rhizotrons across 40 sites and linked MRL to other plant traits to address questions of the regulators of MRL at large spatial scales. We demonstrate that MRL not only decreases with plant investment in root nitrogen (associated with more metabolically active tissues) but also increases with construction of larger diameter roots which is often associated with greater plant reliance on mycorrhizal symbionts. Although theories linking organ structure and function suggest that root traits should play a role in modulating MRL, we found no correlation between root traits associated with structural defense (root tissue density and specific root length) and MRL. Moreover, fine root and leaf lifespan were globally unrelated, except among evergreen species, suggesting contrasting evolutionary selection between leaves and roots facing contrasting environmental influences above vs. belowground. At large geographic scales, MRL was typically longer at sites with lower mean annual temperature and higher mean annual precipitation. Overall, this synthesis uncovered several key ecophysiological covariates and environmental drivers of MRL, highlighting broad avenues for accurate parametrization of global biogeochemical models and the understanding of ecosystem response to global climate change.
Asunto(s)
Ecosistema , Longevidad , Evolución Biológica , Cambio Climático , CabezaRESUMEN
Plant roots represent about a quarter of global plant biomass and constitute a primary source of soil organic carbon (C). Yet, considerable uncertainty persists regarding root litter decomposition and their responses to global change factors (GCFs). Much of this uncertainty stems from a limited understanding of the multifactorial effects of GCFs and it remains unclear how these effects are mediated by litter quality, soil conditions and microbial functionality. Using complementary field decomposition and laboratory incubation approaches, we assessed the relative controls of GCF-mediated changes in root litter traits and soil and microbial properties on fine-root decomposition under warming, nitrogen (N) enrichment, and precipitation alteration. We found that warming and N enrichment accelerated fine-root decomposition by over 10%, and their combination showed an additive effect, while precipitation reduction suppressed decomposition overall by 12%, with the suppressive effect being most significant under warming-alone and N enrichment-alone conditions. Significantly, changes in litter quality played a dominant role and accelerated fine-root decomposition by 15% ~ 18% under warming and N enrichment, while changes in soil and microbial properties were predominant and reduced decomposition by 7% ~ 10% under precipitation reduction and the combined warming and N enrichment. Examining only the decomposition environment or litter properties in isolation can distort global change effects on root decomposition, underestimating precipitation reduction impacts by 38% and overstating warming and N effects by up to 73%. These findings highlight that the net impact of GCFs on root litter decomposition hinges on the interplay between GCF-modulated root decomposability and decomposition environment, as well as on the synergistic or antagonistic relationships among GCFs themselves. Our study emphasizes that integrating the legacy effects of multiple GCFs on root traits, soil conditions and microbial functionality would improve our prediction of C and nutrient cycling under interactive global change scenarios.
Asunto(s)
Cambio Climático , Nitrógeno , Raíces de Plantas , Microbiología del Suelo , Suelo , Raíces de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Suelo/química , Nitrógeno/metabolismo , Nitrógeno/análisis , Carbono/metabolismo , Carbono/análisis , LluviaRESUMEN
The root economics space (RES) is multidimensional and largely shaped by belowground biotic and abiotic influences. However, how root-fungal symbioses and edaphic fertility drive this complexity remains unclear. Here, we measured absorptive root traits of 112 tree species in temperate and subtropical forests of China, including traits linked to functional differences between arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) hosts. Our data, from known mycorrhizal tree species, revealed a 'fungal-symbiosis' dimension distinguishing AM from ECM species. This divergence likely resulted from the contrasting mycorrhizal evolutionary development of AM vs ECM associations. Increased root tissue cortical space facilitates AM symbiosis, whereas increased root branching favours ECM symbiosis. Irrespective of mycorrhizal type, a 'root-lifespan' dimension reflecting aspects of root construction cost and defence was controlled by variation in specific root length and root tissue density, which was fully independent of root nitrogen content. Within this function-based RES, we observed a substantial covariation of axes with soil phosphorus and nitrate levels, highlighting the role played by these two axes in nutrient acquisition and conservation. Overall, our findings demonstrate the importance of evolved mycorrhizal symbiosis pathway and edaphic fertility in framing the RES, and provide theoretical and mechanistic insights into the complexity of root economics.
Asunto(s)
Micorrizas , Fertilidad , Raíces de Plantas/metabolismo , Suelo , Microbiología del Suelo , Simbiosis , ÁrbolesRESUMEN
Plants often associate with specialized decomposer communities that increase plant litter breakdown, a phenomenon that is known as the 'home-field advantage' (HFA). Although the concept of HFA has long considered only the role of the soil microbial community, explicit consideration of the role of the microbial community on the foliage before litter fall (i.e. the phyllosphere community) may help us to better understand HFA. We investigated the occurrence of HFA in the presence vs absence of phyllosphere communities and found that HFA effects were smaller when phyllosphere communities were removed. We propose that priority effects and interactions between phyllosphere and soil organisms can help explain the positive effects of the phyllosphere at home, and suggest a path forward for further investigation.
Asunto(s)
Microbiota , Suelo , Ecosistema , Hojas de la Planta , Plantas , Microbiología del SueloRESUMEN
Plant trait variation drives plant function, community composition and ecosystem processes. However, our current understanding of trait variation disproportionately relies on aboveground observations. Here we integrate root traits into the global framework of plant form and function. We developed and tested an overarching conceptual framework that integrates two recently identified root trait gradients with a well-established aboveground plant trait framework. We confronted our novel framework with published relationships between above- and belowground trait analogues and with multivariate analyses of above- and belowground traits of 2510 species. Our traits represent the leaf and root conservation gradients (specific leaf area, leaf and root nitrogen concentration, and root tissue density), the root collaboration gradient (root diameter and specific root length) and the plant size gradient (plant height and rooting depth). We found that an integrated, whole-plant trait space required as much as four axes. The two main axes represented the fast-slow 'conservation' gradient on which leaf and fine-root traits were well aligned, and the 'collaboration' gradient in roots. The two additional axes were separate, orthogonal plant size axes for height and rooting depth. This perspective on the multidimensional nature of plant trait variation better encompasses plant function and influence on the surrounding environment.
Asunto(s)
Ecosistema , Plantas , Fenotipo , Hojas de la PlantaRESUMEN
The effects of plants on the biosphere, atmosphere and geosphere are key determinants of terrestrial ecosystem functioning. However, despite substantial progress made regarding plant belowground components, we are still only beginning to explore the complex relationships between root traits and functions. Drawing on the literature in plant physiology, ecophysiology, ecology, agronomy and soil science, we reviewed 24 aspects of plant and ecosystem functioning and their relationships with a number of root system traits, including aspects of architecture, physiology, morphology, anatomy, chemistry, biomechanics and biotic interactions. Based on this assessment, we critically evaluated the current strengths and gaps in our knowledge, and identify future research challenges in the field of root ecology. Most importantly, we found that belowground traits with the broadest importance in plant and ecosystem functioning are not those most commonly measured. Also, the estimation of trait relative importance for functioning requires us to consider a more comprehensive range of functionally relevant traits from a diverse range of species, across environments and over time series. We also advocate that establishing causal hierarchical links among root traits will provide a hypothesis-based framework to identify the most parsimonious sets of traits with the strongest links on functions, and to link genotypes to plant and ecosystem functioning.
Asunto(s)
Ecosistema , Plantas , Atmósfera , Ecología , FenotipoRESUMEN
In the context of a recent massive increase in research on plant root functions and their impact on the environment, root ecologists currently face many important challenges to keep on generating cutting-edge, meaningful and integrated knowledge. Consideration of the below-ground components in plant and ecosystem studies has been consistently called for in recent decades, but methodology is disparate and sometimes inappropriate. This handbook, based on the collective effort of a large team of experts, will improve trait comparisons across studies and integration of information across databases by providing standardised methods and controlled vocabularies. It is meant to be used not only as starting point by students and scientists who desire working on below-ground ecosystems, but also by experts for consolidating and broadening their views on multiple aspects of root ecology. Beyond the classical compilation of measurement protocols, we have synthesised recommendations from the literature to provide key background knowledge useful for: (1) defining below-ground plant entities and giving keys for their meaningful dissection, classification and naming beyond the classical fine-root vs coarse-root approach; (2) considering the specificity of root research to produce sound laboratory and field data; (3) describing typical, but overlooked steps for studying roots (e.g. root handling, cleaning and storage); and (4) gathering metadata necessary for the interpretation of results and their reuse. Most importantly, all root traits have been introduced with some degree of ecological context that will be a foundation for understanding their ecological meaning, their typical use and uncertainties, and some methodological and conceptual perspectives for future research. Considering all of this, we urge readers not to solely extract protocol recommendations for trait measurements from this work, but to take a moment to read and reflect on the extensive information contained in this broader guide to root ecology, including sections I-VII and the many introductions to each section and root trait description. Finally, it is critical to understand that a major aim of this guide is to help break down barriers between the many subdisciplines of root ecology and ecophysiology, broaden researchers' views on the multiple aspects of root study and create favourable conditions for the inception of comprehensive experiments on the role of roots in plant and ecosystem functioning.
Asunto(s)
Ecosistema , Plantas , Bases de Datos Factuales , Ecología , FenotipoRESUMEN
Plants respond to resource stress by changing multiple aspects of their biomass allocation, morphology, physiology and architecture. To date, we lack an integrated view of the relative importance of these plastic responses in alleviating resource stress and of the consistency/variability of these responses among species. We subjected nine species (legumes, forbs and graminoids) to nitrogen and/or light shortages and measured 11 above-ground and below-ground trait adjustments critical in the alleviation of these stresses (plus several underlying traits). Nine traits out of 11 showed adjustments that improved plants' potential capacity to acquire the limiting resource at a given time. Above ground, aspects of plasticity in allocation, morphology, physiology and architecture all appeared important in improving light capture, whereas below ground, plasticity in allocation and physiology were most critical to improving nitrogen acquisition. Six traits out of 11 showed substantial heterogeneity in species plasticity, with little structuration of these differences within trait covariation syndromes. Such comprehensive assessment of the complex nature of phenotypic responses of plants to multiple stress factors, and the comparison of plant responses across multiple species, makes a clear case for the high (but largely overlooked) diversity of potential plastic responses of plants, and for the need to explore the potential rules structuring them.
Asunto(s)
Fenómenos Fisiológicos de las Plantas , Plantas/anatomía & histología , Estrés Fisiológico , Biomasa , Luz , Nitrógeno/farmacología , Fenómenos Fisiológicos de las Plantas/efectos de los fármacos , Fenómenos Fisiológicos de las Plantas/efectos de la radiación , Plantas/efectos de los fármacos , Plantas/efectos de la radiación , Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/efectos de la radiaciónRESUMEN
Fine-root traits play key roles in ecosystem processes, but the drivers of fine-root trait diversity remain poorly understood. The plant economic spectrum (PES) hypothesis predicts that leaf and root traits evolved in coordination. Mycorrhizal association type, plant growth form and climate may also affect root traits. However, the extent to which these controls are confounded with phylogenetic structuring remains unclear. Here we compiled information about root and leaf traits for > 600 species. Using phylogenetic relatedness, climatic ranges, growth form and mycorrhizal associations, we quantified the importance of these factors in the global distribution of fine-root traits. Phylogenetic structuring accounts for most of the variation for all traits excepting root tissue density, with root diameter and nitrogen concentration showing the strongest phylogenetic signal and specific root length showing intermediate values. Climate was the second most important factor, whereas mycorrhizal type had little effect. Substantial trait coordination occurred between leaves and roots, but the strength varied between growth forms and clades. Our analyses provide evidence that the integration of roots and leaves in the PES requires better accounting of the variation in traits across phylogenetic clades. Inclusion of phylogenetic information provides a powerful framework for predictions of belowground functional traits at global scales.
Asunto(s)
Micorrizas/fisiología , Filogenia , Desarrollo de la Planta , Plantas/microbiología , Carácter Cuantitativo Heredable , Nitrógeno/metabolismo , Hojas de la Planta/fisiologíaRESUMEN
Variation and tradeoffs within and among plant traits are increasingly being harnessed by empiricists and modelers to understand and predict ecosystem processes under changing environmental conditions. While fine roots play an important role in ecosystem functioning, fine-root traits are underrepresented in global trait databases. This has hindered efforts to analyze fine-root trait variation and link it with plant function and environmental conditions at a global scale. This Viewpoint addresses the need for a centralized fine-root trait database, and introduces the Fine-Root Ecology Database (FRED, http://roots.ornl.gov) which so far includes > 70 000 observations encompassing a broad range of root traits and also includes associated environmental data. FRED represents a critical step toward improving our understanding of below-ground plant ecology. For example, FRED facilitates the quantification of variation in fine-root traits across root orders, species, biomes, and environmental gradients while also providing a platform for assessments of covariation among root, leaf, and wood traits, the role of fine roots in ecosystem functioning, and the representation of fine roots in terrestrial biosphere models. Continued input of observations into FRED to fill gaps in trait coverage will improve our understanding of changes in fine-root traits across space and time.
Asunto(s)
Bases de Datos Factuales , Raíces de Plantas/fisiología , Ecología/métodos , Ecosistema , Raíces de Plantas/anatomía & histologíaRESUMEN
Recent studies have shown that accounting for intraspecific trait variation (ITV) may better address major questions in community ecology. However, a general picture of the relative extent of ITV compared to interspecific trait variation in plant communities is still missing. Here, we conducted a meta-analysis of the relative extent of ITV within and among plant communities worldwide, using a data set encompassing 629 communities (plots) and 36 functional traits. Overall, ITV accounted for 25% of the total trait variation within communities and 32% of the total trait variation among communities on average. The relative extent of ITV tended to be greater for whole-plant (e.g. plant height) vs. organ-level traits and for leaf chemical (e.g. leaf N and P concentration) vs. leaf morphological (e.g. leaf area and thickness) traits. The relative amount of ITV decreased with increasing species richness and spatial extent, but did not vary with plant growth form or climate. These results highlight global patterns in the relative importance of ITV in plant communities, providing practical guidelines for when researchers should include ITV in trait-based community and ecosystem studies.
Asunto(s)
Biodiversidad , Fenotipo , Fenómenos Fisiológicos de las Plantas , Especificidad de la EspecieRESUMEN
Plants adapt phenotypically to different conditions of light and nutrient supply, supposedly in order to achieve colimitation of these resources. Their key variable of adjustment is the ratio of leaf area to root length, which relies on plant biomass allocation and organ morphology. We recorded phenotypic differences in leaf and root mass fractions (LMF, RMF), specific leaf area (SLA) and specific root length (SRL) of 12 herbaceous species grown in factorial combinations of high/low irradiance and fertilization treatments. Leaf area and root length ratios, and their components, were influenced by nonadditive effects between light and nutrient supply, and differences in the strength of plant responses were partly explained by Ellenberg's species values representing ecological optima. Changes in allocation were critical in plant responses to nutrient availability, as the RMF contribution to changes in root length was 2.5× that of the SRL. Contrastingly, morphological adjustments (SLA rather than LMF) made up the bulk of plant response to light availability. Our results suggest largely predictable differences in responses of species and groups of species to environmental change. Nevertheless, they stress the critical need to account for adjustments in below-ground mass allocation to understand the assembly and responses of communities in changing environments.
Asunto(s)
Biomasa , Hojas de la Planta/fisiología , Raíces de Plantas/fisiología , Análisis de Varianza , Fertilizantes , Luz , Fenotipo , Filogenia , Hojas de la Planta/anatomía & histología , Raíces de Plantas/anatomía & histología , Análisis de Regresión , Especificidad de la EspecieRESUMEN
Human activities that involve land-use change often cause major transformations to community and ecosystem properties both aboveground and belowground, and when land use is abandoned, these modifications can persist for extended periods. However, the mechanisms responsible for rapid recovery vs. long-term maintenance of ecosystem changes following abandonment remain poorly understood. Here, we examined the long-term ecological effects of two remote former settlements, regularly visited for -300 years by reindeer-herding Sami and abandoned -100 years ago, within an old-growth boreal forest that is considered one of the most pristine regions in northern Scandinavia. These human legacies were assessed through measurements of abiotic and biotic soil properties and vegetation characteristics at the settlement sites and at varying distances from them. Low-intensity land use by Sami is characterized by the transfer of organic matter towards the settlements by humans and reindeer herds, compaction of soil through trampling, disappearance of understory vegetation, and selective cutting of pine trees for fuel and construction. As a consequence, we found a shift towards early successional plant species and a threefold increase in soil microbial activity and nutrient availability close to the settlements relative to away from them. These changes in soil fertility and vegetation contributed to 83% greater total vegetation productivity, 35% greater plant biomass, and 23% and 16% greater concentrations of foliar N and P nearer the settlements, leading to a greater quantity and quality of litter inputs. Because decomposer activity was also 40% greater towards the settlements, soil organic matter cycling and nutrient availability were further increased, leading to likely positive feedbacks between the aboveground and belowground components resulting from historic land use. Although not all of the activities typical of Sami have left visible residual traces on the ecosystem after 100 years, their low-intensity but long-term land use at settlement sites has triggered a rejuvenation of the ecosystem that is still present. Our data demonstrates that aboveground-belowground interactions strongly control ecosystem responses to historical human land use and that medium- to long-term consequences of even low-intensity human activities must be better accounted for if we are to predict and manage ecosystems succession following land-use abandonment.
Asunto(s)
Ecosistema , Actividades Humanas , Árboles/fisiología , Regiones Árticas , Ambiente , Monitoreo del Ambiente , Humanos , Grupos de Población , Suelo , Suecia , Factores de TiempoRESUMEN
To adapt to the complex belowground environment, plants make trade-offs between root resource acquisition and defence ability. This includes forming partnerships with different types of root associating microorganisms, such as arbuscular mycorrhizal and ectomycorrhizal fungi. These trade-offs, by mediating root chemistry, exert legacy effects on nutrient release during decomposition, which may, in turn, affect the ability of new roots to re-acquire resources, thereby generating a feedback loop. However, the linkages at the basis of this potential feedback loop remain largely unquantified. Here, we propose a trait-based root 'acquisition-defence-decomposition' conceptual framework and test the strength of relevant linkages across 90 angiosperm tree species. We show that, at the plant species level, the root-fungal symbiosis gradient within the root economics space, root chemical defence (condensed tannins), and root decomposition rate are closely linked, providing support to this framework. Beyond the dichotomy between arbuscular mycorrhizal-dominated versus ectomycorrhizal-dominated systems, we suggest a continuous shift in feedback loops, from 'high arbuscular mycorrhizal symbiosis-low defence-fast decomposition-inorganic nutrition' by evolutionarily ancient taxa to 'high ectomycorrhizal symbiosis-high defence-slow decomposition-organic nutrition' by more modern taxa. This 'acquisition-defence-decomposition' framework provides a foundation for testable hypotheses on multidimensional linkages between species' belowground strategies and ecosystem nutrient cycling in an evolutionary context.
Asunto(s)
Magnoliopsida , Micorrizas , Raíces de Plantas , Simbiosis , Árboles , Raíces de Plantas/microbiología , Raíces de Plantas/metabolismo , Micorrizas/fisiología , Árboles/microbiología , Árboles/metabolismo , Magnoliopsida/microbiología , Magnoliopsida/metabolismoRESUMEN
Coevolution has driven speciation and evolutionary novelty in functional traits across the Tree of Life. Classic coevolutionary syndromes such as plant-pollinator, plant-herbivore, and host-parasite have focused strongly on the fitness consequences during the lifetime of the interacting partners. Less is known about the consequences of coevolved traits for ecosystem-level processes, in particular their 'afterlife' legacies for litter decomposition, nutrient cycling, and the functional ecology of decomposers. We review the mechanisms by which traits resulting from coevolution between plants and their consumers, microbial symbionts, or humans, and between microbial decomposers and invertebrates, drive plant litter decomposition pathways and rates. This supports the idea that much of current global variation in the decomposition of plant material is a legacy of coevolution.
Asunto(s)
Ecosistema , Plantas , Animales , Humanos , Plantas/genética , Plantas/metabolismo , Ecología , Invertebrados , Fenotipo , Hojas de la Planta/metabolismo , Suelo , Nitrógeno/metabolismoRESUMEN
Dead wood provides a huge terrestrial carbon stock and a habitat to wide-ranging organisms during its decay. Our brief review highlights that, in order to understand environmental change impacts on these functions, we need to quantify the contributions of different interacting biotic and abiotic drivers to wood decomposition. LOGLIFE is a new long-term 'common-garden' experiment to disentangle the effects of species' wood traits and site-related environmental drivers on wood decomposition dynamics and its associated diversity of microbial and invertebrate communities. This experiment is firmly rooted in pioneering experiments under the directorship of Terry Callaghan at Abisko Research Station, Sweden. LOGLIFE features two contrasting forest sites in the Netherlands, each hosting a similar set of coarse logs and branches of 10 tree species. LOGLIFE welcomes other researchers to test further questions concerning coarse wood decay that will also help to optimise forest management in view of carbon sequestration and biodiversity conservation.
Asunto(s)
Clima , Ecosistema , Monitoreo del Ambiente/métodos , Árboles/clasificación , Árboles/fisiología , Madera , Ciclo del Carbono , Especificidad de la Especie , Factores de TiempoRESUMEN
Roots are central to the function of natural and agricultural ecosystems by driving plant acquisition of soil resources and influencing the carbon cycle. Root characteristics like length, diameter and volume are critical to measure to understand plant and soil functions. RhizoVision Explorer is an open-source software designed to enable researchers interested in roots by providing an easy-to-use interface, fast image processing and reliable measurements. The default broken roots mode is intended for roots sampled from pots and soil cores, washed and typically scanned on a flatbed scanner, and provides measurements like length, diameter and volume. The optional whole root mode for complete root systems or root crowns provides additional measurements such as angles, root depth and convex hull. Both modes support providing measurements grouped by defined diameter ranges, the inclusion of multiple regions of interest and batch analysis. RhizoVision Explorer was successfully validated against ground truth data using a new copper wire image set. In comparison, the current reference software, the commercial WinRhizo™, drastically underestimated volume when wires of different diameters were in the same image. Additionally, measurements were compared with WinRhizo™ and IJ_Rhizo using a simulated root image set, showing general agreement in software measurements, except for root volume. Finally, scanned root image sets acquired in different labs for the crop, herbaceous and tree species were used to compare results from RhizoVision Explorer with WinRhizo™. The two software showed general agreement, except that WinRhizo™ substantially underestimated root volume relative to RhizoVision Explorer. In the current context of rapidly growing interest in root science, RhizoVision Explorer intends to become a reference software, improve the overall accuracy and replicability of root trait measurements and provide a foundation for collaborative improvement and reliable access to all.