Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Vis ; 19(7): 5, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31287859

RESUMEN

The visual system must organize dynamic input into useful percepts across time, balancing between stability and sensitivity to change. The temporal integration window (TIW) has been hypothesized to underlie this balance: If two or more stimuli fall within the same TIW, they are integrated into a single percept; those that fall in different windows are segmented (Arnett & Di Lollo, 1979; Wutz, Muschter, van Koningsbruggen, Weisz, & Melcher, 2016). Visual TIWs have been studied in adults, showing average windows of 65 ms (Wutz et al., 2016); however, it is unclear how windows develop through early childhood. Here we measured TIWs in 5- to 7-year-old children and adults, using a variant of the missing dot task (Di Lollo, 1980; Wutz et al. 2016), in which integration and segmentation thresholds were measured within the same participant, using the same stimuli. Participants saw a sequence of two displays separated by an interstimulus interval (ISI) that determined the visibility of a visual search target. Longer ISIs increased the likelihood of detecting a segmentation target (but decreased detection for the integration target) although shorter ISIs increased the likelihood of detecting the integration target (but decreased detection of the segmentation target). We could then estimate the TIW by measuring the point at which these two functions intersect. Children's TIWs (M = 68 ms) were comparable to adults' (M = 73 ms) with no appreciable age trend within our sample, indicating that TIWs reach adult levels by approximately 5 years of age.


Asunto(s)
Percepción del Tiempo/fisiología , Percepción Visual/fisiología , Adulto , Estudios de Casos y Controles , Niño , Preescolar , Femenino , Percepción de Forma/fisiología , Humanos , Masculino , Percepción de Movimiento/fisiología , Estimulación Luminosa , Tiempo de Reacción/fisiología , Factores de Tiempo , Adulto Joven
2.
Dev Cogn Neurosci ; 57: 101146, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35973361

RESUMEN

While it has been shown that alpha frequency increases over development (Stroganova et al., 1999), a precise trajectory has not yet been specified, making it challenging to constrain theories linking alpha rhythms to perceptual development. We conducted a comprehensive review of studies measuring resting-state occipital peak alpha frequency (PAF, the frequency exhibiting maximum power) from birth to 18 years of age. From 889 potentially relevant studies, we identified 40 reporting PAF (109 samples; 3882 subjects). A nonlinear regression revealed that PAF increases quickly in early childhood (from 6.1 Hz at 6 months to 8.4 Hz at 5 years) and levels off in adolescence (9.7 Hz at 13 years), with an asymptote at 10.1 Hz. We found no effect of resting state procedure (eyes-open versus eyes-closed) or biological sex. PAF has been implicated as a clock on visual temporal processing, with faster frequencies associated with higher visual temporal resolution. Psychophysical studies have shown that temporal resolution reaches adult levels by 5 years of age (Freschl et al., 2019, 2020). The fact that PAF reaches the adult range of 8-12 Hz by that age strengthens the link between PAF and temporal resolution.


Asunto(s)
Percepción del Tiempo , Adulto , Humanos , Preescolar , Lactante , Adolescente , Percepción Visual , Ritmo alfa , Sensación , Electroencefalografía
3.
Autism Res ; 14(5): 946-958, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33174396

RESUMEN

Individuals with autism spectrum disorder (ASD) experience differences in visual temporal processing, the part of vision responsible for parsing continuous input into discrete objects and events. Here we investigated temporal processing in 2-year-old toddlers diagnosed with ASD and age-matched typically developing (TD) toddlers. We used a visual search task where the visibility of the target was determined by the pace of a display sequence. On integration trials, each display viewed alone had no visible target, but if integrated over time, the target became visible. On segmentation trials, the target became visible only when displays were perceptually segmented. We measured the percent of trials when participants fixated the target as a function of the stimulus onset asynchrony (SOA) between displays. We computed the crossover point of the integration and segmentation performance functions for each group, an estimate of the temporal integration window (TIW), the period in which visual input is combined. We found that both groups of toddlers had significantly longer TIWs (125 ms) than adults (65 ms) from previous studies using the same paradigm, and that toddlers with ASD had significantly shorter TIWs (108 ms) than chronologically age-matched TD controls (142 ms). LAY SUMMARY: We investigated how young children, with and without autism, organize dynamic visual information across time, using a visual search paradigm. We found that toddlers with autism had higher temporal resolution than typically developing (TD) toddlers of the same age - that is, they are more likely to be able to detect rapid change across time, relative to TD toddlers. These differences in visual temporal processing can impact how one sees, interprets, and interacts with the world. Autism Res 2021, 14: 946-958. © 2020 International Society for Autism Research and Wiley Periodicals LLC.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Percepción del Tiempo , Adulto , Preescolar , Cognición , Humanos , Percepción Visual
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA