Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Clin Genet ; 103(4): 401-412, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36576162

RESUMEN

Chromoanagenesis is a cellular mechanism that leads to complex chromosomal rearrangements (CCR) during a single catastrophic event. It may result in loss and/or gain of genetic material and may be responsible for various phenotypes. These rearrangements are usually sporadic. However, some familial cases have been reported. Here, we studied six families in whom an asymptomatic or paucisymptomatic parent transmitted a CCR to its offspring in an unbalanced manner. The rearrangements were characterized by karyotyping, fluorescent in situ hybridization, chromosomal microarray (CMA) and/or whole genome sequencing (WGS) in the carrier parents and offspring. We then hypothesized meiosis-pairing figures between normal and abnormal parental chromosomes that may have led to the formation of new unbalanced rearrangements through meiotic recombination. Our work indicates that chromoanagenesis might be associated with a normal phenotype and normal fertility, even in males, and that WGS may be the only way to identify these events when there is no imbalance. Subsequently, the CCR can be transmitted to the next generation in an unbalanced and unpredictable manner following meiotic recombination. Thereby, prenatal diagnosis using CMA should be proposed to these families to detect any pathogenic imbalances in the offspring.


Asunto(s)
Aberraciones Cromosómicas , Reordenamiento Génico , Masculino , Femenino , Embarazo , Humanos , Hibridación Fluorescente in Situ , Cariotipificación , Meiosis , Translocación Genética
2.
Haemophilia ; 29(5): 1320-1333, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37410802

RESUMEN

INTRODUCTION: Conventional genetic investigation fails to identify the F8 causal variant in 2.5%-10% of haemophilia A (HA) patients with non-severe phenotypes. In these cases, F8 deep intronic variants could be causal. AIM: To identify pathogenic F8 deep intronic variants in genetically unresolved families with non-severe HA analysed in the haematology laboratory of the Hospices Civils de Lyon. METHODS: The whole F8 was analysed by next generation sequencing. The pathogenic impact of candidate variants identified was assessed using both in silico analysis (MaxEntScan and spliceAI) and functional analysis (RNA or minigene assay). RESULTS: Sequencing was performed in 49/55 families included for which a DNA sample from a male propositus was available. In total, 33 candidate variants from 43 propositi were identified. These variants corresponded to 31 single nucleotide substitutions, one 173-bp deletion, and an 869-bp tandem triplication. No candidate variant was found in six propositi. The most frequent variants found were the association of [c.2113+1154G>C and c.5374-304C>T], identified in five propositi, and the c.2114-6529C>G identified in nine propositi. Four variants had been previously described as HA-causing. Splicing functional assay found a deleterious impact for 11 substitutions (c.671-94G>A, c.788-312A>G, c.2113+1154G>C, c.2114-6529C>G, c.5999-820A>T, c.5999-786C>A, c.5999-669G>T, c.5999-669G>A, c.5999-669G>C, c.6900+4104A>C, and c.6901-2992A>G). The HA-causing variant was identified in 33/49 (67%) cases. In total, F8 deep intronic variants caused 8.8% of the non-severe HA among the 1643 families analysed in our laboratory. CONCLUSION: The results emphasise the value of whole F8 gene sequencing combined with splicing functional analyses to improve the diagnosis yield for non-severe HA.


Asunto(s)
Hemofilia A , Humanos , Masculino , Hemofilia A/diagnóstico , Hemofilia A/genética , Hemofilia A/patología , Factor VIII/genética , Factor VIII/metabolismo , Empalme del ARN/genética , Mutación , Fenotipo
3.
Haemophilia ; 28(1): 117-124, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34480810

RESUMEN

INTRODUCTION: Depending on the location of insertion of the gained region, F8 duplications can have variable clinical impacts from benign impact to severe haemophilia A phenotype. AIM: To characterize two large Xq28 duplications involving F8 incidentally detected by chromosome microarray analysis (CMA) in two patients presenting severe intellectual disability but no history of bleeding disorder. METHODS: Whole genome sequencing (WGS) was performed in order to characterize the two large Xq28 duplications at nucleotide level. RESULTS: In patient 1, a 60-73 kb gained region encompassing the exons 23-26 of F8 and SMIM9 was inserted at the int22h-2 locus following a non-homologous recombination between int22h-1 and int22h-2. We hypothesized that two independent events, micro-homology-mediated break-induced replication (MMBIR) and break-induced replication (BIR), could be involved in this rearrangement. In patient 2, the CMA found duplication from 101 to 116-kb long encompassing the exons 16-26 of F8 and SMIM9. The WGS analysis identified a more complex rearrangement with the presence of three genomic junctions. Due to the multiple micro-homologies observed at breakpoints, a replication-based mechanism such as fork stalling and template switching (FoSTeS) was greatly suspected. In both cases, these complex rearrangements preserved an intact copy of the F8. CONCLUSION: This study highlights the value of WGS to characterize the genomic junction at the nucleotide level and ultimately better describe the molecular mechanisms involved in Xq28 structural variations. It also emphasizes the importance of specifying the structure of the genomic gain in order to improve genotype-phenotype correlation and genetic counselling.


Asunto(s)
Hemofilia A , Cromosomas Humanos X/genética , Estudios de Asociación Genética , Genómica , Hemofilia A/diagnóstico , Hemofilia A/genética , Humanos , Secuenciación Completa del Genoma
4.
Am J Hum Genet ; 102(2): 199-206, 2018 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-29357978

RESUMEN

Incorporation of distant intronic sequences in mature mRNA is an underappreciated cause of genetic disease. Several disease-causing pseudoexons have been found to contain repetitive elements such as Alu elements. This study describes an original pathological mechanism by which a small intronic deletion leads to Alu exonization. We identified an intronic deletion, c.2113+461_2113+473del, in the F8 intron 13, in two individuals with mild hemophilia A. In vivo and in vitro transcript analysis found an aberrant transcript, with an insertion of a 122-bp intronic fragment (c.2113_2114ins2113+477_2113+598) at the exon 13-14 junction. This out-of-frame insertion is predicted to lead to truncated protein (p.Gly705Aspfs∗37). DNA sequencing analysis found that the pseudoexon corresponds to antisense AluY element and the deletion removed a part of the poly(T)-tail from the right arm of these AluY. The heterogenous nuclear riboprotein C1/C2 (hnRNP C) is an important antisense Alu-derived cryptic exon silencer and binds to poly(T)-tracts. Disruption of the hnRNP C binding site in AluY T-tract by mutagenesis or hnRNP C knockdown using siRNA in HeLa cells reproduced the effect of c.2113+461_2113+473del. The screening of 114 unrelated families with mild hemophilia A in whom no genetic event was previously identified found a deletion in the poly(T)-tail of AluY in intron 13 in 54% of case subjects (n = 61/114). In conclusion, this study describes a deletion leading to Alu exonization found in 6.1% of families with mild hemophila A in France.


Asunto(s)
Elementos Alu/genética , Exones/genética , Factor VIII/genética , Hemofilia A/genética , Intrones/genética , Eliminación de Secuencia/genética , Secuencia de Bases , Niño , Femenino , Genes Reporteros , Haplotipos/genética , Células HeLa , Ribonucleoproteína Heterogénea-Nuclear Grupo C/genética , Humanos , Masculino , Persona de Mediana Edad
5.
Haemophilia ; 26(5): 847-854, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32812322

RESUMEN

INTRODUCTION: With current molecular diagnosis, about 1 to 5% of haemophilia A (HA) patients remain genetically unresolved. In these cases, deep intronic variation or structural variation disrupting the F8 gene could be causal. AIM: To identify the causal variation in four genetically unresolved mild-to-severe HA patients using an F8 mRNA analysis approach. METHODS: Ectopic F8 mRNA analysis was performed in four unrelated HA patients. An in vitro minigene assay was performed in order to confirm the deleterious splicing impact of each variation identified. RESULTS: In all probands, mRNA analysis revealed an aberrant splicing pattern, and sequencing of the corresponding intronic region found a deep intronic substitution. Two of these were new variations: c.2113+601G>A and c.1443+602A>G, while the c.143+1567A>G, found in two patients, has previously been reported. The c.1443+602A>G and the c.143+1567A>G variants both led to the creation of a de novo acceptor or donor splice site, respectively. Moreover, the c.143+1567A>G was found in 3/6 patients with genetically unresolved moderate HA registered in our laboratory. Haplotype analysis performed in all patients carrying the c.143+1567A>G variation suggests that this variation could be a recurrent variation. The c.2113+601G>A led to the exonization of a 122-bp antisense AluY element by increasing the strength of a pre-existing cryptic 5' splice site. For each point variation, in vitro splicing analysis confirmed its deleterious impact on splicing of the F8 transcript. CONCLUSION: We identified three deep intronic variations, leading to an aberrant mRNA splicing process as HA causing variation.


Asunto(s)
Predisposición Genética a la Enfermedad/genética , Hemofilia A/genética , Intrones/genética , Femenino , Humanos , Masculino
6.
Haemophilia ; 25(2): 306-315, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30690819

RESUMEN

BACKGROUND: Classically, the study of splicing impact of variation located near the splice site is performed by both in silico and mRNA analysis. However, RNA sample was rarely available. OBJECTIVE: To characterize a panel of putative haemophilia A splicing variations. MATERIALS AND METHODS: Twenty-six F8 variations identified from a cohort of 2075 haemophilia A families were studied using both bioinformatic tools and in vitro minigene assays in HeLa and Huh7 cells. RESULTS: An aberrant splicing was demonstrated for 21/26 tested sequence variations. A good correlation between in silico and in vitro analysis was obtained for variations affecting donor splice site (12/14) and for the synonymous variations located inside an exon (6/6). Conversely, no concordant results were observed for the six variations affecting acceptor splice sites. The variations resulted more frequently in exon skipping (n = 13) than in activation of nearby cryptic splice sites (n = 5), in use of a de novo splice site (n = 2) or in insertion of large intronic sequences (n = 1). This study allowed to reclassify 5 synonymous substitutions c.1167A>G (p.Gln389Gln), c.1569G>T (p.Leu523Leu), c.1752G>A (p.Gln584Gln), c.5586G>A (p.Leu1862Leu) and c.6066C>T (p.Gly2022Gly) as splicing variations. The pathological significance of five variations remained unclear (c.222G>A [p.Thr74Thr], c.237C>T [p.Asn79Asn], c.240C>T [p.Ile80Ile], c.2113+5_2113+8del and c.2113+5G>A). DISCUSSION: The minigene assay herein gave additional evidences for the clinical significance of 21/26 F8 putative splice site mutations. Such investigation should be performed for each F8 putative splice site variation for which no mRNA sample is available, notably to greatly improve the genetic counselling given to female carriers.


Asunto(s)
Factor VIII/genética , Hemofilia A/genética , Empalme del ARN , Adolescente , Adulto , Niño , Preescolar , Biología Computacional/métodos , Exones , Genes Reporteros , Hemofilia A/patología , Humanos , Lactante , Masculino , Mutación Missense , Polimorfismo de Nucleótido Simple , Sitios de Empalme de ARN , Sistema de Registros , Índice de Severidad de la Enfermedad , Adulto Joven
8.
Platelets ; 28(8): 825-828, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28436749

RESUMEN

At birth, severe thrombocytopenia without context of infection should mainly suggest neonatal alloimmune thrombocytopenia (NAIT), especially in case of a platelet count below 20 GL-1. We report two cases of severe neonatal thrombocytopenia, first suspected as being NAIT. Both had a platelet count below 20 GL-1 with platelet clumps. The absence of alloantibodies and failure of platelet transfusion and intravenous immunoglobulins to improve the platelet count led to question the diagnosis and to evoke inherited bleeding disorders. Measurements of Von Willebrand factor (VWF) levels showed a marked reduction of VWF:RCo and a normal VWF:Ag, suggesting a type 2B Von Willebrand disease (VWD2B). Ristocetin-induced platelet aggregation could not be performed because of the very low platelet count. In the first case, after sequencing VWF exon 28, a heterozygous p.Leu1460Pro mutation was found consistent with VWD2B. In the second case, the genetic analysis of VWF exon 28 identified a homozygous mutation: p.Pro1337Leu confirming type VWD2B and also the p.Arg854Gln homozygous mutation in exon 20 confirming type 2N (ratio FVIII/VWF:Ag <0.5). The two cases underline that, even if NAIT remains the most common diagnosis in severe neonatal thrombocytopenia, it should be challenged in the absence of documented incompatibility, chronic evolution, or treatment failure. Diagnosis of VWD2B should be considered in early thrombocytopenia, even without familial history. In the cases presented, genotyping confirmed the subtype of VWD and helped to guide the therapeutic management of bleeding episodes.


Asunto(s)
Trombocitopenia Neonatal Aloinmune/diagnóstico , Enfermedad de von Willebrand Tipo 2/diagnóstico , Diagnóstico Diferencial , Femenino , Humanos , Recién Nacido , Masculino , Enfermedad de von Willebrand Tipo 2/patología
10.
Hum Mutat ; 36(5): 548-61, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25728920

RESUMEN

We report the largest international study on Glanzmann thrombasthenia (GT), an inherited bleeding disorder where defects of the ITGA2B and ITGB3 genes cause quantitative or qualitative defects of the αIIbß3 integrin, a key mediator of platelet aggregation. Sequencing of the coding regions and splice sites of both genes in members of 76 affected families identified 78 genetic variants (55 novel) suspected to cause GT. Four large deletions or duplications were found by quantitative real-time PCR. Families with mutations in either gene were indistinguishable in terms of bleeding severity that varied even among siblings. Families were grouped into type I and the rarer type II or variant forms with residual αIIbß3 expression. Variant forms helped identify genes encoding proteins mediating integrin activation. Splicing defects and stop codons were common for both ITGA2B and ITGB3 and essentially led to a reduced or absent αIIbß3 expression; included was a heterozygous c.1440-13_c.1440-1del in intron 14 of ITGA2B causing exon skipping in seven unrelated families. Molecular modeling revealed how many missense mutations induced subtle changes in αIIb and ß3 domain structure across both subunits, thereby interfering with integrin maturation and/or function. Our study extends knowledge of GT and the pathophysiology of an integrin.


Asunto(s)
Mutación , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/genética , Trombastenia/genética , Estudios de Cohortes , Análisis Mutacional de ADN , Exones , Reordenamiento Génico , Estudios de Asociación Genética , Pruebas Genéticas , Genotipo , Humanos , Integrina alfa2/química , Integrina alfa2/genética , Integrina beta3/química , Integrina beta3/genética , Modelos Moleculares , Fenotipo , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/química , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Sitios de Empalme de ARN , Empalme del ARN , Eliminación de Secuencia , Trombastenia/diagnóstico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA