Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Am J Physiol Gastrointest Liver Physiol ; 317(3): G264-G274, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31216172

RESUMEN

Extended liver resection results in loss of a large fraction of the hepatic vascular bed, thereby causing abrupt alterations in perfusion of the remnant liver. Mechanisms of hemodynamic adaptation and associated changes in oxygen metabolism after liver resection and the effect of mechanical portal blood flow reduction were assessed. A pig model (n = 16) of extended partial hepatectomy was established that included continuous observation for 24 h under general anesthesia. Pigs were randomly separated into two groups, one with a portal flow reduction of 70% compared with preoperative values, and the other as a control (n = 8, each). In controls, portal flow [mean (SD)] increased from 74 (8) mL·min-1·100 g-1 preoperatively to 240 (48) mL·min-1·100 g-1 at 6 h after resection (P < 0.001). Hepatic arterial buffer response was abolished after resection. Oxygen uptake per unit liver mass increased from 4.0 (1.1) mL·min-1·100 g-1 preoperatively to 7.7 (1.7) mL·min-1·100 g-1 8 h after resection (P = 0.004). Despite this increase in relative oxygen uptake, total hepatic oxygen consumption (V̇o2) was not maintained, and markers of hypoxia and anaerobic metabolism were significantly increased in hepatocytes after resection. Reduced postoperative portal flow was associated with significantly decreased levels of aspartate aminotransferase and bilirubin and increased hepatic clearance of indocyanine green. In conclusion, major liver resection was associated with persistent portal hyperperfusion, loss of the hepatic arterial buffer response, decreased total hepatic V̇o2 and with increased anaerobic metabolism. Portal flow modulation by partial portal vein occlusion attenuated liver injury after extended liver resection.NEW & NOTEWORTHY Because of continuous monitoring, the experiments allow precise observation of the influence of liver resection on systemic and local abdominal hemodynamic alterations and oxygen metabolism. Major liver resection is associated with significant and persistent portal hyperperfusion and loss of hepatic arterial buffer response. The correlation of portal hyperperfusion and parameters of liver injury and dysfunction offers a novel therapeutic option to attenuate liver injury after extended liver resection.


Asunto(s)
Circulación Hepática/fisiología , Regeneración Hepática/fisiología , Hígado/irrigación sanguínea , Hígado/cirugía , Animales , Aspartato Aminotransferasas/metabolismo , Femenino , Hemodinámica/efectos de los fármacos , Hepatectomía , Hígado/metabolismo , Masculino , Microcirculación/fisiología , Presión Portal/fisiología , Vena Porta/fisiología , Sustancias Protectoras/farmacología , Porcinos
2.
Int J Cancer ; 138(4): 949-63, 2016 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-26355710

RESUMEN

The transcription factor grainyhead-like 2 (GRHL2) plays a crucial role in various developmental processes. Although GRHL2 recently has attracted considerable interest in that it could be identified as a novel suppressor of the epithelial-to-mesenchymal transition, evidence is emerging that GRHL2 also exhibits tumour-promoting activities. Aim of the present study therefore was to help defining the relevance of GRHL2 for human cancers by performing a comprehensive immunohistochemical analysis of GRHL2 expression in normal (n = 608) and (n = 3,143) tumour tissues using tissue microarrays. Consistent with its accepted role in epithelial morphogenesis, GRHL2 expression preferentially but not exclusively was observed in epithelial cells. Regenerative and proliferating epithelial cells with stem cell features showed a strong GRHL2 expression. Highly complex GRHL2 expression patterns indicative of both reduced and elevated GRHL2 expression in tumours, possibly reflecting potential tumour-suppressing as well as oncogenic functions of GRHL2 in distinct human tumours, were observed. A dysregulation of GRHL2 expression for the first time was found in tumours of non-epithelial origin (e.g., astrocytomas, melanomas). We also report GRHL2 copy number gains which, however, did not necessarily translate into increased GRHL2 expression levels in cancer cells. Results obtained by meta-analysis of gene expression microarray data in conjunction with functional assays demonstrating a direct regulation of HER3 expression further point to a potential therapeutic relevance of GRHL2 in ovarian cancer. Hopefully, the results presented in this study may pave the way for a better understanding of the yet largely unknown function of GRHL2 in the initiation, progression and also therapy of cancers.


Asunto(s)
Proteínas de Unión al ADN/análisis , Proteínas de Unión al ADN/biosíntesis , Células Epiteliales/metabolismo , Transición Epitelial-Mesenquimal , Neoplasias/metabolismo , Factores de Transcripción/análisis , Factores de Transcripción/biosíntesis , Línea Celular Tumoral , Humanos , Inmunohistoquímica , Hibridación Fluorescente in Situ , Análisis de Secuencia por Matrices de Oligonucleótidos , Análisis de Matrices Tisulares
3.
J Biol Chem ; 288(32): 22993-3008, 2013 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-23814079

RESUMEN

Using a retrovirus-mediated cDNA expression cloning approach, we identified the grainyhead-like 2 (GRHL2) transcription factor as novel protooncogene. Overexpression of GRHL2 in NIH3T3 cells induced striking morphological changes, an increase in cell proliferation, anchorage-independent growth, and tumor growth in vivo. By combining a microarray analysis and a phylogenetic footprinting analysis with various biochemical assays, we identified the epidermal growth factor receptor family member Erbb3 as a novel GRHL2 target gene. In breast cancer cell lines, shRNA-mediated knockdown of GRHL2 expression or functional inactivation of GRHL2 using dominant negative GRHL2 proteins induces down-regulation of ERBB3 gene expression, a striking reduction in cell proliferation, and morphological and phenotypical alterations characteristic of an epithelial-to-mesenchymal transition (EMT), thus implying contradictory roles of GRHL2 in breast carcinogenesis. Interestingly, we could further demonstrate that expression of GRHL2 is directly suppressed by the transcription factor zinc finger enhancer-binding protein 1 (ZEB1), which in turn is a direct target for repression by GRHL2, suggesting that the EMT transcription factors GRHL2 and ZEB1 form a double negative regulatory feedback loop in breast cancer cells. Finally, a comprehensive immunohistochemical analysis of GRHL2 expression in primary breast cancers showed loss of GRHL2 expression at the invasive front of primary tumors. A pathophysiological relevance of GRHL2 in breast cancer metastasis is further demonstrated by our finding of a statistically significant association between loss of GRHL2 expression in primary breast cancers and lymph node metastasis. We thus demonstrate a crucial role of GRHL2 in breast carcinogenesis.


Asunto(s)
Neoplasias de la Mama/metabolismo , Proteínas de Unión al ADN/metabolismo , Regulación Neoplásica de la Expresión Génica , Neoplasias Mamarias Animales/metabolismo , Factores de Transcripción/metabolismo , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proteínas de Unión al ADN/genética , Femenino , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Metástasis Linfática , Neoplasias Mamarias Animales/genética , Neoplasias Mamarias Animales/patología , Ratones , Células 3T3 NIH , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Factores de Transcripción/genética , Homeobox 1 de Unión a la E-Box con Dedos de Zinc
4.
Bioeng Transl Med ; 9(2): e10631, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38435814

RESUMEN

Microvascular obstruction (MVO) often occurs in ST-elevation myocardial infarction (STEMI) patients after percutaneous coronary intervention (PCI). Diagnosis and treatment of MVO lack appropriate and established procedures. This study focused on two major points by using an in vitro multiscale flow model, which comprised an aortic root model with physiological blood flow and a microfluidic model of the microcirculation with vessel diameters down to 50 µm. First, the influence of porcine microthrombi (MT), injected into the fluidic microchip, on perfusion was investigated. We found that only 43% of all injected MT were fully occlusive. Second, it could also be shown that the maximal concentration of a dye (representing therapeutic agent) during intracoronary infusion could be increased on average by 58%, when proximally occluding the coronary artery by a balloon during drug infusion. The obtained results and insights enhance the understanding of perfusion in MVO-affected microcirculation and could lead to improved treatment methods for MVO patients.

5.
Ann Biomed Eng ; 51(6): 1343-1355, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36681747

RESUMEN

Microvascular Obstruction (MVO) is a common consequence of acute myocardial infarction. MVO is underdiagnosed and treatment is often nonspecific and ineffective. A multi-scale in-vitro benchtop model was established to investigate drug perfusion in MVO affected microcirculation. The central element of the benchtop model was a fluidic microchip containing channels with diameters between [Formula: see text] and 50 µm representing [Formula: see text] of the microvascular tree fed by the left anterior descending artery (LAD). The outlets of the chip could be closed to mimic MVO. Two methods for intracoronary infusion of pharmacologic agents (simulated by dye) to regions with MVO were investigated using an occlusion-infusion catheter. The first case was a simple, bolus-like infusion into the LAD, whereas the second case consisted of infusion with concomitant proximal occlusion of the LAD phantom with a balloon. Results show that local dye concentration maxima in the chip with MVO were 2.2-3.2 times higher for the case with proximal balloon occlusion than for the conventional infusion method. The cumulated dose could be raised by a factor 4.6-5.2. These results suggest that drug infusion by catheter is more effective if the blood supply to the treated vascular bed is temporarily blocked by a balloon catheter.


Asunto(s)
Infarto del Miocardio , Intervención Coronaria Percutánea , Humanos , Intervención Coronaria Percutánea/métodos , Vasos Coronarios , Corazón , Catéteres , Microcirculación , Circulación Coronaria
6.
Ann Biomed Eng ; 50(9): 1090-1102, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35639221

RESUMEN

Cardiac microvascular obstruction (MVO) associated with acute myocardial infarction (heart attack) is characterized by partial or complete elimination of perfusion in the myocardial microcirculation. A new catheter-based method (CoFI, Controlled Flow Infusion) has recently been developed to diagnose MVO in the catheterization laboratory during acute therapy of the heart attack. A porcine MVO model demonstrates that CoFI can accurately identify the increased hydraulic resistance of the affected microvascular bed. A benchtop microcirculation model was developed and tuned to reproduce in vivo MVO characteristics. The tuned benchtop model was then used to systematically study the effect of different levels of collateral flow. These experiments showed that measurements obtained in the catheter-based method were adversely affected such that collateral flow may be misinterpreted as MVO. Based on further analysis of the measured data, concepts to mitigate the adverse effects were formulated which allow discrimination between collateral flow and MVO.


Asunto(s)
Infarto del Miocardio , Intervención Coronaria Percutánea , Infarto del Miocardio con Elevación del ST , Animales , Catéteres , Circulación Coronaria , Microcirculación , Intervención Coronaria Percutánea/efectos adversos , Infarto del Miocardio con Elevación del ST/diagnóstico , Infarto del Miocardio con Elevación del ST/etiología , Infarto del Miocardio con Elevación del ST/terapia , Porcinos
7.
PLoS One ; 13(9): e0203368, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30192812

RESUMEN

INTRODUCTION: Arteriovenous malformations (AVMs) are characterized by pathological high flow, low resistance connections between arteries and veins. Treatment is critically dependent on correct interpretation of angioarchitectural features. However, some microfistular AVMs do not match the characteristics described in current AVM classification systems. Therefore, we propose a new subgroup of microfistular AVMs, composed of enlarged, fistulous paths on the venous half of capillaries and/or dilated draining venules (hyperdynamic, capillary-venulous malformation [CV-AVM]). CV-AVMs still ensure arterial flow to the periphery and fistulous venous drainage is less pronounced than in classical AVMs such that these lesions are often misinterpreted as venous malformations. MATERIALS AND METHODS: We developed a computational model to study the effects of microvascular anomalies on local hemodynamics, as well as their impact on angiographic contrast propagation. Flow rates and pressures were computed with a lumped parameter description, while contrast propagation was determined by solving the 1D advection-diffusion equation. RESULTS AND CONCLUSIONS: For the newly proposed CV-AVM angioarchitecture, the computational model predicts increased arterio-venous contrast agent transit times and highly dispersive transport characteristics, compared to microfistular, interstitial type IV AVMs and high flow type II and III AVMs. We related these findings to time-contrast intensity curves sampled from clinical angiographies and found that there is strong evidence for the existence of CV-AVM.


Asunto(s)
Malformaciones Arteriovenosas/patología , Malformaciones Arteriovenosas/fisiopatología , Modelos Cardiovasculares , Angiografía de Substracción Digital , Fístula Arteriovenosa/clasificación , Fístula Arteriovenosa/patología , Fístula Arteriovenosa/fisiopatología , Malformaciones Arteriovenosas/clasificación , Simulación por Computador , Hemodinámica , Humanos , Microvasos/anomalías , Microvasos/patología , Microvasos/fisiopatología
8.
Ann Biomed Eng ; 45(6): 1449-1461, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28324193

RESUMEN

Peripheral arterio-venous malformations (pAVMs) are congenital vascular anomalies that require treatment, due to their severe clinical consequences. The complexity of lesions often leads to misdiagnosis and ill-planned treatments. To improve disease management, we developed a computational model to quantify the hemodynamic effects of key angioarchitectural features of pAVMs. Hemodynamic results were used to predict the transport of contrast agent (CA), which allowed us to compare our findings to digital subtraction angiography (DSA) recordings of patients. The model is based on typical pAVM morphologies and a generic vessel network that represents realistic vascular feeding and draining components related to lesions. A lumped-parameter description of the vessel network was employed to compute blood pressure and flow rates. CA-transport was determined by coupling the model to a 1D advection-diffusion equation. Results show that the extent of hemodynamic effects of pAVMs, such as arterial steal and venous hypertension, strongly depends on the lesion type and its vascular architecture. Dimensions of shunting vessels strongly influence hemodynamic parameters. Our results underline the importance of the dynamics of CA-transport in diagnostic DSA images. In this context, we identified a set of temporal CA-transport parameters, which are indicative of the presence and specific morphology of pAVMs.


Asunto(s)
Modelos Cardiovasculares , Malformaciones Vasculares/diagnóstico por imagen , Angiografía de Substracción Digital , Medios de Contraste , Hemodinámica , Humanos , Modelación Específica para el Paciente , Malformaciones Vasculares/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA