Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Med Sci Sports Exerc ; 56(5): 813-821, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38109167

RESUMEN

PURPOSE: Exercise-induced cell-free DNA (ei-cfDNA) has been studied in response to various types of exercise. Its correlation with exercise intensity and duration has been observed consistently. However, comprehensive measurements and exploration of the tissue of origin are lacking. The aim of this study is to establish precise connections between exercise variables and the distribution of tissue of origin, aiming to provide further evidence supporting its use as a biomarker for exercise. METHODS: Twelve self-identified active adults (six men and six women) performed a crossover study starting with either endurance testing or resistance testing under different intensities and protocols. We obtained blood before and after each exercise session and measured the levels of cfDNA and determined its tissue of origin utilizing cell type-specific DNA methylation patterns in plasma. RESULTS: We found that when duration and intensity are fixed, ei-cfDNA fold change correlates with energy expenditure ( P = 0.001) in endurance testing and years trained ( P = 0.001) in resistance testing. Most of the ei-cfDNA comes from increases in white blood cells (~95%) where neutrophils make up the majority (~74%) and the distribution is different between exercise modalities and protocols. CONCLUSIONS: This study highlights the potential of exercise-induced cfDNA as a biomarker for exercise, showing correlations with energy expenditure and a consistent pattern of tissue origin. Additional research is needed to investigate potential sex differences in the response of cfDNA to exercise, further exploring its clinical implications.


Asunto(s)
Ácidos Nucleicos Libres de Células , Adulto , Humanos , Masculino , Femenino , Estudios Cruzados , Ejercicio Físico/fisiología , Biomarcadores , Metabolismo Energético/fisiología
2.
Diabetes ; 73(4): 554-564, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38266068

RESUMEN

Assessment of pancreas cell type composition is crucial to the understanding of the genesis of diabetes. Current approaches use immunodetection of protein markers, for example, insulin as a marker of ß-cells. A major limitation of these methods is that protein content varies in physiological and pathological conditions, complicating the extrapolation to actual cell number. Here, we demonstrate the use of cell type-specific DNA methylation markers for determining the fraction of specific cell types in human islet and pancreas specimens. We identified genomic loci that are uniquely demethylated in specific pancreatic cell types and applied targeted PCR to assess the methylation status of these loci in tissue samples, enabling inference of cell type composition. In islet preparations, normalization of insulin secretion to ß-cell DNA revealed similar ß-cell function in pre-type 1 diabetes (T1D), T1D, and type 2 diabetes (T2D), which was significantly lower than in donors without diabetes. In histological pancreas specimens from recent-onset T1D, this assay showed ß-cell fraction within the normal range, suggesting a significant contribution of ß-cell dysfunction. In T2D pancreata, we observed increased α-cell fraction and normal ß-cell fraction. Methylation-based analysis provides an accurate molecular alternative to immune detection of cell types in the human pancreas, with utility in the interpretation of insulin secretion assays and the assessment of pancreas cell composition in health and disease.


Asunto(s)
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Células Secretoras de Glucagón , Células Secretoras de Insulina , Islotes Pancreáticos , Humanos , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Islotes Pancreáticos/metabolismo , Metilación de ADN , Páncreas/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Células Secretoras de Glucagón/metabolismo
3.
J Cardiovasc Transl Res ; 16(1): 199-208, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35978264

RESUMEN

The use of cardiopulmonary bypass (CPB) is thought to cause delayed cardiac damage. DNA methylation-based liquid biopsies are novel biomarkers for monitoring acute cardiac cell death. We assessed cell-free DNA molecules as markers for cardiac damage after open-heart surgery. Novel cardiomyocyte-specific DNA methylation markers were applied to measure cardiac cfDNA in the plasma of 42 infants who underwent open-heart surgery. Cardiac cfDNA was elevated following surgery, reflecting direct surgery-related tissue damage, and declined thereafter in most patients. The concentration of cardiac cfDNA post-surgery correlated with the duration of CPB and aortic cross clamping. Strikingly, cardiac cfDNA at 6 h predicted duration of mechanical ventilation and maximal vasoactive-inotropic score better than did maximal troponin levels. Cardiac cfDNA reveals heart damage associated with CPB, and can be used to monitor cardiac cell death, to predict clinical outcome of surgery and to assess performance of cardioprotective interventions.


Asunto(s)
Procedimientos Quirúrgicos Cardíacos , Ácidos Nucleicos Libres de Células , Lactante , Humanos , Biomarcadores , Muerte Celular , Metilación de ADN
4.
Cell Rep ; 42(12): 113457, 2023 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-37995187

RESUMEN

While programmed cell death plays important roles during morphogenetic stages of development, post-differentiation organ growth is considered an efficient process whereby cell proliferation increases cell number. Here we demonstrate that early postnatal growth of the pancreas unexpectedly involves massive acinar cell elimination. Measurements of cell proliferation and death in the human pancreas in comparison to the actual increase in cell number predict daily elimination of 0.7% of cells, offsetting 88% of cell formation over the first year of life. Using mouse models, we show that death is associated with mitosis, through a failure of dividing cells to generate two viable daughters. In p53-deficient mice, acinar cell death and proliferation are reduced, while organ size is normal, suggesting that p53-dependent developmental apoptosis triggers compensatory proliferation. We propose that excess cell turnover during growth of the pancreas, and presumably other organs, facilitates robustness to perturbations and supports maintenance of tissue architecture.


Asunto(s)
Células Acinares , Proteína p53 Supresora de Tumor , Animales , Ratones , Humanos , Células Acinares/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Páncreas/metabolismo , Diferenciación Celular , Apoptosis/fisiología
5.
Cell Rep Med ; 4(6): 101074, 2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37290439

RESUMEN

Strenuous physical exercise causes a massive elevation in the concentration of circulating cell-free DNA (cfDNA), which correlates with effort intensity and duration. The cellular sources and physiological drivers of this phenomenon are unknown. Using methylation patterns of cfDNA and associated histones, we show that cfDNA in exercise originates mostly in extramedullary polymorphonuclear neutrophils. Strikingly, cardiomyocyte cfDNA concentration increases after a marathon, consistent with elevated troponin levels and indicating low-level, delayed cardiac cell death. Physical impact, low oxygen levels, and elevated core body temperature contribute to neutrophil cfDNA release, while muscle contraction, increased heart rate, ß-adrenergic signaling, or steroid treatment fail to cause elevation of cfDNA. Physical training reduces neutrophil cfDNA release after a standard exercise, revealing an inverse relationship between exercise-induced cfDNA release and training level. We speculate that the release of cfDNA from neutrophils in exercise relates to the activation of neutrophils in the context of exercise-induced muscle damage.


Asunto(s)
Ácidos Nucleicos Libres de Células , Neutrófilos , Miocitos Cardíacos , Ejercicio Físico/fisiología , Histonas
6.
Med ; 4(4): 263-281.e4, 2023 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-37060900

RESUMEN

BACKGROUND: Vascular endothelial cells (VECs) are an essential component of each tissue, contribute to multiple pathologies, and are targeted by important drugs. Yet, there is a shortage of biomarkers to assess VEC turnover. METHODS: To develop DNA methylation-based liquid biopsies for VECs, we determined the methylome of VECs isolated from freshly dissociated human tissues. FINDINGS: A comparison with a human cell-type methylome atlas yielded thousands of loci that are uniquely unmethylated in VECs. These sites are typically gene enhancers, often residing adjacent to VEC-specific genes. We also identified hundreds of genomic loci that are differentially methylated in organotypic VECs, indicating that VECs feeding specific organs are distinct cell types with a stable epigenetic identity. We established universal and lung-specific VEC markers and evaluated their presence in circulating cell-free DNA (cfDNA). Nearly 2.5% of cfDNA in the plasma of healthy individuals originates from VECs. Sepsis, graft versus host disease, and cardiac catheterization are associated with elevated levels of VEC-derived cfDNA, indicative of vascular damage. Lung-specific VEC cfDNA is selectively elevated in patients with chronic obstructive pulmonary disease (COPD) or lung cancer, revealing tissue-specific vascular turnover. CONCLUSIONS: VEC cfDNA biomarkers inform vascular dynamics in health and disease, potentially contributing to early diagnosis and monitoring of pathologies, and assessment of drug activity. FUNDING: This work was supported by the Beutler Research Program, Helmsley Charitable Trust, JDRF, Grail and the DON Foundation (to Y.D.). Y.D holds the Walter & Greta Stiel Chair in heart studies. B.G., R.S., J.M., D.N., T.K., and Y.D. filed patents on cfDNA analysis.


Asunto(s)
Ácidos Nucleicos Libres de Células , Epigenoma , Humanos , Endotelio Vascular , Células Endoteliales/metabolismo , Biomarcadores/metabolismo , Biopsia Líquida
7.
Med ; 3(7): 468-480.e5, 2022 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-35716665

RESUMEN

BACKGROUND: Much remains unknown regarding the response of the immune system to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) vaccination. METHODS: We employed circulating cell-free DNA (cfDNA) to assess the turnover of specific immune cell types following administration of the Pfizer/BioNTech vaccine. FINDINGS: The levels of B cell cfDNA after the primary dose correlated with development of neutralizing antibodies and memory B cells after the booster, revealing a link between early B cell turnover-potentially reflecting affinity maturation-and later development of effective humoral response. We also observed co-elevation of B cell, T cell, and monocyte cfDNA after the booster, underscoring the involvement of innate immune cell turnover in the development of humoral and cellular adaptive immunity. Actual cell counts remained largely stable following vaccination, other than a previously demonstrated temporary reduction in neutrophil and lymphocyte counts. CONCLUSIONS: Immune cfDNA dynamics reveal the crucial role of the primary SARS-CoV-2 vaccine in shaping responses of the immune system following the booster vaccine. FUNDING: This work was supported by a generous gift from Shlomo Kramer. Supported by grants from Human Islet Research Network (HIRN UC4DK116274 and UC4DK104216 to R.S. and Y.D.), Ernest and Bonnie Beutler Research Program of Excellence in Genomic Medicine, The Alex U Soyka Pancreatic Cancer Fund, The Israel Science Foundation, the Waldholtz/Pakula family, the Robert M. and Marilyn Sternberg Family Charitable Foundation, the Helmsley Charitable Trust, Grail, and the DON Foundation (to Y.D.). Y.D. holds the Walter and Greta Stiel Chair and Research Grant in Heart Studies. I.F.-F. received a fellowship from the Glassman Hebrew University Diabetes Center.


Asunto(s)
Vacuna BNT162 , COVID-19 , Ácidos Nucleicos Libres de Células , SARS-CoV-2 , Adulto , Anciano , Anticuerpos Neutralizantes/genética , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/genética , Anticuerpos Antivirales/inmunología , Vacuna BNT162/administración & dosificación , COVID-19/inmunología , COVID-19/prevención & control , Ácidos Nucleicos Libres de Células/genética , Ácidos Nucleicos Libres de Células/inmunología , Femenino , Humanos , Inmunización Secundaria , Masculino , Células B de Memoria/inmunología , Células B de Memoria/metabolismo , Persona de Mediana Edad , SARS-CoV-2/inmunología , Adulto Joven
8.
JCI Insight ; 5(14)2020 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-32573495

RESUMEN

It has been proposed that unmethylated insulin promoter fragments in plasma derive exclusively from ß cells, reflect their recent demise, and can be used to assess ß cell damage in type 1 diabetes. Herein we describe an ultrasensitive assay for detection of a ß cell-specific DNA methylation signature, by simultaneous assessment of 6 DNA methylation markers, that identifies ß cell DNA in mixtures containing as little as 0.03% ß cell DNA (less than 1 ß cell genome equivalent). Based on this assay, plasma from nondiabetic individuals (N = 218, aged 4-78 years) contained on average only 1 ß cell genome equivalent/mL. As expected, cell-free DNA (cfDNA) from ß cells was significantly elevated in islet transplant recipients shortly after transplantation. We also detected ß cell cfDNA in a patient with KATP congenital hyperinsulinism, in which substantial ß cell turnover is thought to occur. Strikingly, in contrast to previous reports, we observed no elevation of ß cell-derived cfDNA in autoantibody-positive subjects at risk for type 1 diabetes (N = 32), individuals with recent-onset type 1 diabetes (<4 months, N = 92), or those with long-standing disease (>4 months, N = 38). We discuss the utility of sensitive ß cell cfDNA analysis and potential explanations for the lack of a ß cell cfDNA signal in type 1 diabetes.


Asunto(s)
Ácidos Nucleicos Libres de Células/sangre , Metilación de ADN/genética , Diabetes Mellitus Tipo 1/sangre , Células Secretoras de Insulina/metabolismo , Adolescente , Adulto , Anciano , Biomarcadores/sangre , Niño , Preescolar , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/patología , Femenino , Humanos , Insulina/genética , Insulina/metabolismo , Células Secretoras de Insulina/patología , Masculino , Persona de Mediana Edad , Adulto Joven
9.
Dev Cell ; 45(6): 726-737.e3, 2018 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-29920277

RESUMEN

Developmental processes in different mammals are thought to share fundamental cellular mechanisms. We report a dramatic increase in cell size during postnatal pancreas development in rodents, accounting for much of the increase in organ size after birth. Hypertrophy of pancreatic acinar cells involves both higher ploidy and increased biosynthesis per genome copy; is maximal adjacent to islets, suggesting endocrine to exocrine communication; and is partly driven by weaning-related processes. In contrast to the situation in rodents, pancreas cell size in humans remains stable postnatally, indicating organ growth by pure hyperplasia. Pancreatic acinar cell volume varies 9-fold among 24 mammalian species analyzed, and shows a striking inverse correlation with organismal lifespan. We hypothesize that cellular hypertrophy is a strategy for rapid postnatal tissue growth, entailing life-long detrimental effects.


Asunto(s)
Tamaño de los Órganos/fisiología , Páncreas/crecimiento & desarrollo , Páncreas/metabolismo , Células Acinares/fisiología , Animales , Aumento de la Célula , Tamaño de la Célula , Humanos , Hipertrofia , Células Secretoras de Insulina/fisiología , Ratones , Páncreas Exocrino/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA