Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(6)2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36991854

RESUMEN

The direct tactile assessment of surface textures during palpation is an essential component of open surgery that is impeded in minimally invasive and robot-assisted surgery. When indirectly palpating with a surgical instrument, the structural vibrations from this interaction contain tactile information that can be extracted and analysed. This study investigates the influence of the parameters contact angle α and velocity v→ on the vibro-acoustic signals from this indirect palpation. A 7-DOF robotic arm, a standard surgical instrument, and a vibration measurement system were used to palpate three different materials with varying α and v→. The signals were processed based on continuous wavelet transformation. They showed material-specific signatures in the time-frequency domain that retained their general characteristic for varying α and v→. Energy-related and statistical features were extracted, and supervised classification was performed, where the testing data comprised only signals acquired with different palpation parameters than for training data. The classifiers support vector machine and k-nearest neighbours provided 99.67% and 96.00% accuracy for the differentiation of the materials. The results indicate the robustness of the features against variations in the palpation parameters. This is a prerequisite for an application in minimally invasive surgery but needs to be confirmed in realistic experiments with biological tissues.


Asunto(s)
Procedimientos Quirúrgicos Robotizados , Robótica , Procedimientos Quirúrgicos Robotizados/métodos , Robótica/métodos , Tacto , Procedimientos Quirúrgicos Mínimamente Invasivos/métodos , Palpación , Acústica
2.
BMC Surg ; 22(1): 279, 2022 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35854297

RESUMEN

Creating surgical access is a critical step in laparoscopic surgery. Surgeons have to insert a sharp instrument such as the Veress needle or a trocar into the patient's abdomen until the peritoneal cavity is reached. They solely rely on their experience and distorted tactile feedback in that process, leading to a complication rate as high as 14% of all cases. Recent studies have shown the feasibility of surgical support systems that provide intraoperative feedback regarding the insertion process to improve laparoscopic access outcomes. However, to date, the surgeons' requirements for such support systems remain unclear. This research article presents the results of an explorative study that aimed to acquire data about the information that helps surgeons improve laparoscopic access outcomes. The results indicate that feedback regarding the reaching of the peritoneal cavity is of significant importance and should be presented visually or acoustically. Finally, a solution should be straightforward and intuitive to use, should support or even improve the clinical workflow, but also cheap enough to facilitate its usage rate. While this study was tailored to laparoscopic access, its results also apply to other minimally invasive procedures.


Asunto(s)
Laparoscopía , Cirujanos , Abdomen/cirugía , Humanos , Laparoscopía/métodos , Agujas , Instrumentos Quirúrgicos
3.
Sensors (Basel) ; 21(23)2021 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-34884166

RESUMEN

(1) Background: Contact Endoscopy (CE) and Narrow Band Imaging (NBI) are optical imaging modalities that can provide enhanced and magnified visualization of the superficial vascular networks in the laryngeal mucosa. The similarity of vascular structures between benign and malignant lesions causes a challenge in the visual assessment of CE-NBI images. The main objective of this study is to use Deep Convolutional Neural Networks (DCNN) for the automatic classification of CE-NBI images into benign and malignant groups with minimal human intervention. (2) Methods: A pretrained Res-Net50 model combined with the cut-off-layer technique was selected as the DCNN architecture. A dataset of 8181 CE-NBI images was used during the fine-tuning process in three experiments where several models were generated and validated. The accuracy, sensitivity, and specificity were calculated as the performance metrics in each validation and testing scenario. (3) Results: Out of a total of 72 trained and tested models in all experiments, Model 5 showed high performance. This model is considerably smaller than the full ResNet50 architecture and achieved the testing accuracy of 0.835 on the unseen data during the last experiment. (4) Conclusion: The proposed fine-tuned ResNet50 model showed a high performance to classify CE-NBI images into the benign and malignant groups and has the potential to be part of an assisted system for automatic laryngeal cancer detection.


Asunto(s)
Neoplasias Laríngeas , Laringe , Endoscopía , Humanos , Neoplasias Laríngeas/diagnóstico por imagen , Imagen de Banda Estrecha , Redes Neurales de la Computación
4.
Sensors (Basel) ; 21(19)2021 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-34640975

RESUMEN

BACKGROUND: Biometric sensing is a security method for protecting information and property. State-of-the-art biometric traits are behavioral and physiological in nature. However, they are vulnerable to tampering and forgery. METHODS: The proposed approach uses blood flow sounds in the carotid artery as a source of biometric information. A handheld sensing device and an associated desktop application were built. Between 80 and 160 carotid recordings of 11 s in length were acquired from seven individuals each. Wavelet-based signal analysis was performed to assess the potential for biometric applications. RESULTS: The acquired signals per individual proved to be consistent within one carotid sound recording and between multiple recordings spaced by several weeks. The averaged continuous wavelet transform spectra for all cardiac cycles of one recording showed specific spectral characteristics in the time-frequency domain, allowing for the discrimination of individuals, which could potentially serve as an individual fingerprint of the carotid sound. This is also supported by the quantitative analysis consisting of a small convolutional neural network, which was able to differentiate between different users with over 95% accuracy. CONCLUSION: The proposed approach and processing pipeline appeared promising for the discrimination of individuals. The biometrical recognition could clinically be used to obtain and highlight differences from a previously established personalized audio profile and subsequently could provide information on the source of the deviation as well as on its effects on the individual's health. The limited number of individuals and recordings require a study in a larger population along with an investigation of the long-term spectral stability of carotid sounds to assess its potential as a biometric marker. Nevertheless, the approach opens the perspective for automatic feature extraction and classification.


Asunto(s)
Algoritmos , Identificación Biométrica , Auscultación , Biometría , Arteria Carótida Común , Humanos
5.
Skin Res Technol ; 26(4): 537-541, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31883147

RESUMEN

BACKGROUND: Brachytherapy of thin skin tumors using beta particles can protect underlying sensitive structures such as the bone because of the rapid dose falloff of this type of radiation in tissue. The current work describes a skin brachytherapy applicator, based on beta radiation, that can provide the needed cell-killing radiation dose matched to the shape of individual skin tumors. MATERIALS AND METHODS: The applicator and its template were fabricated using 3D printing technology. Any clinically approved beta-emitting isotope in the form of a radioactive gel could theoretically be used in this applicator. Monte Carlo simulations were employed to study the capability of the applicator in conforming dose distribution based on the shape of the tumor. Dose profile in the shallow depth, transverse dose profiles at different depths, and the percent depth dose from this applicator were calculated. The radioisotope of choice for our calculations was Yttrium-90 (Y-90). RESULTS: Using the proposed applicator, it is possible to create a desired dose profile matching the tumor surface shape. CONCLUSION: The short-range of the beta radiation, together with the dose conforming capability of the applicator, may lead to minimal interactions with the healthy tissue around the skin lesion.


Asunto(s)
Braquiterapia , Neoplasias Cutáneas , Partículas beta , Braquiterapia/instrumentación , Braquiterapia/métodos , Simulación por Computador , Humanos , Método de Montecarlo , Impresión Tridimensional , Radiometría , Dosificación Radioterapéutica , Neoplasias Cutáneas/radioterapia , Radioisótopos de Itrio
6.
Skin Res Technol ; 26(1): 25-29, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31338896

RESUMEN

BACKGROUND: Radiation therapy using beta particles is an interesting treatment for very superficial skin lesions. Due to their low penetration in tissue and rapid dose fall-off, beta particles can protect underlying bony structures and surrounding healthy tissue while irradiating the skin tumor. In the current work, a simple method for the fabrication of a radioactive patch for use in skin cancer therapy based on a beta-emitting isotope is presented. MATERIALS AND METHODS: The beta radiation sources were Y-90 microspheres currently used for catheter-based radioembolization of unresectable liver tumors. The microspheres were filtered through a syringe filter to trap them on the cellulose nitrate paper of the filter and create a radioactive patch. In the current study, to avoid the need for a hot laboratory, the experiment was done using nonradioactive microspheres. An optical microscope was used to verify the distribution of the particles on the filter paper. RESULTS: Visual evaluation of the patches showed that using the proposed method, therapeutic skin patches with a fairly uniform distribution of microspheres can be created. CONCLUSION: The proposed simple method may be used in creating radiotherapeutic patches using Y-90 microspheres for radiation therapy of thin skin lesions located close to sensitive structures.


Asunto(s)
Partículas beta/uso terapéutico , Microesferas , Neoplasias Cutáneas/radioterapia , Radioisótopos de Itrio , Sistemas de Liberación de Medicamentos , Estudios de Factibilidad , Humanos , Radioisótopos de Itrio/administración & dosificación , Radioisótopos de Itrio/uso terapéutico
7.
Sensors (Basel) ; 20(21)2020 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-33121054

RESUMEN

The classification of thyroid nodules using ultrasound (US) imaging is done using the Thyroid Imaging Reporting and Data System (TIRADS) guidelines that classify nodules based on visual and textural characteristics. These are composition, shape, size, echogenicity, calcifications, margins, and vascularity. This work aims to reduce subjectivity in the current diagnostic process by using geometric and morphological (G-M) features that represent the visual characteristics of thyroid nodules to provide physicians with decision support. A total of 27 G-M features were extracted from images obtained from an open-access US thyroid nodule image database. 11 significant features in accordance with TIRADS were selected from this global feature set. Each feature was labeled (0 = benign and 1 = malignant) and the performance of the selected features was evaluated using machine learning (ML). G-M features together with ML resulted in the classification of thyroid nodules with a high accuracy, sensitivity and specificity. The results obtained here were compared against state-of the-art methods and perform significantly well in comparison. Furthermore, this method can act as a computer aided diagnostic (CAD) system for physicians by providing them with a validation of the TIRADS visual characteristics used for the classification of thyroid nodules in US images.


Asunto(s)
Sistemas de Apoyo a Decisiones Clínicas , Interpretación de Imagen Asistida por Computador , Aprendizaje Automático , Nódulo Tiroideo , Humanos , Médicos , Nódulo Tiroideo/clasificación , Nódulo Tiroideo/diagnóstico por imagen , Ultrasonografía
8.
Sensors (Basel) ; 20(14)2020 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-32707740

RESUMEN

Longitudinal and perpendicular changes in the vocal fold's blood vessels are associated with the development of benign and malignant laryngeal lesions. The combination of Contact Endoscopy (CE) and Narrow Band Imaging (NBI) can provide intraoperative real-time visualization of the vascular changes in the laryngeal mucosa. However, the visual evaluation of vascular patterns in CE-NBI images is challenging and highly depends on the clinicians' experience. The current study aims to evaluate and compare the performance of a manual and an automatic approach for laryngeal lesion's classification based on vascular patterns in CE-NBI images. In the manual approach, six observers visually evaluated a series of CE+NBI images that belong to a patient and then classified the patient as benign or malignant. For the automatic classification, an algorithm based on characterizing the level of the vessel's disorder in combination with four supervised classifiers was used to classify CE-NBI images. The results showed that the manual approach's subjective evaluation could be reduced by using a computer-based approach. Moreover, the automatic approach showed the potential to work as an assistant system in case of disagreements among clinicians and to reduce the manual approach's misclassification issue.


Asunto(s)
Endoscopía , Neoplasias Laríngeas , Laringe , Imagen de Banda Estrecha , Algoritmos , Humanos , Neoplasias Laríngeas/diagnóstico por imagen , Laringe/diagnóstico por imagen , Laringe/patología
9.
Minim Invasive Ther Allied Technol ; 25(4): 176-87, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27161210

RESUMEN

Techniques for intraoperative radiation therapy (IORT), the applications of tumor bed radiation immediately after surgery or utilising intracavitary access, have evolved in recent years. They are designed to substitute or complement conventional external beam radiation therapy in selected patients. IORT has become an excellent treatment option because of good long-term therapy outcomes. The combination of IORT with external beam radiation therapy has the potential to improve local control. The purpose of this paper is to present IORT techniques using gamma and electronic sources, as well as more conventional nuclide-based approaches and to evaluate their effectiveness. Common techniques for radiation of tumor cavities are listed and compared. Radionuclide IORT methods are represented by balloon and hybrid multi-catheter devices in combination with appropriate afterloaders. Electron beam therapy dedicated for use as intraoperative radiation system is reviewed and miniature x-ray sources in electronic radiation therapy are presented. These systems could further simplify IORT, because they are easy to use and require no shielding due to their relatively low photon energies. In combination with additional imaging techniques (MRI, US, CT and NucMed) the application of these miniature x-ray sources or catheter-based nuclide therapies could be the future of IORT.


Asunto(s)
Periodo Intraoperatorio , Neoplasias/radioterapia , Radioterapia/instrumentación , Radioterapia/métodos , Braquiterapia/métodos , Humanos , Dosis de Radiación , Radioterapia Adyuvante , Radioterapia Guiada por Imagen/instrumentación , Radioterapia Guiada por Imagen/métodos
10.
Diagnostics (Basel) ; 14(15)2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39125574

RESUMEN

Laparoscopic access, a critical yet challenging step in surgical procedures, often leads to complications. Existing systems, such as improved Veress needles and optical trocars, offer limited safety benefits but come with elevated costs. In this study, a prototype of a novel technology for guiding needle interventions based on vibroacoustic signals is evaluated in porcine cadavers. The prototype consistently detected successful abdominal cavity entry in 100% of cases during 193 insertions across eight porcine cadavers. The high signal quality allowed for the precise identification of all Veress needle insertion phases, including peritoneum puncture. The findings suggest that this vibroacoustic-based guidance technology could enhance surgeons' situational awareness and provide valuable support during laparoscopic access. Unlike existing solutions, this technology does not require sensing elements in the instrument's tip and remains compatible with medical instruments from various manufacturers.

11.
Health Technol (Berl) ; 14(1): 1-14, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38229886

RESUMEN

Purpose: This contribution explores the underuse of artificial intelligence (AI) in the health sector, what this means for practice, and how much the underuse can cost. Attention is drawn to the relevance of an issue that the European Parliament has outlined as a "major threat" in 2020. At its heart is the risk that research and development on trusted AI systems for medicine and digital health will pile up in lab centers without generating further practical relevance. Our analysis highlights why researchers, practitioners and especially policymakers, should pay attention to this phenomenon. Methods: The paper examines the ways in which governments and public agencies are addressing the underuse of AI. As governments and international organizations often acknowledge the limitations of their own initiatives, the contribution explores the causes of the current issues and suggests ways to improve initiatives for digital health. Results: Recommendations address the development of standards, models of regulatory governance, assessment of the opportunity costs of underuse of technology, and the urgency of the problem. Conclusions: The exponential pace of AI advances and innovations makes the risks of underuse of AI increasingly threatening.

12.
Int J Comput Assist Radiol Surg ; 18(11): 1987-1990, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37566300

RESUMEN

PURPOSE: Early detection of tumors and their spread, particularly in lymph node illnesses, is critical for a full recovery. However, it is currently difficult due to a lack of imaging or detection devices that provide the necessary spatial depth and location information. Consequently, it would be beneficial to have a simple and cost-effective sensor device to determine the 3D position of, e.g., a lymph node in the patient's coordinate system. METHODS: In this work, we present a concept and design for a novel semiconductor-based 3D detection system that uses inexpensive off-the-shelf components to measure gamma activity. A simple Arduino-type microcontroller calculates the 3D position of the probe based on the number of the measured pulse, the spatial sensitivity characteristics, and the known geometry of the device. RESULTS: The system was set up from four photodiodes (Osram BPW34), a transistor-based pre-amplifier, and a two-stage operational amplifier as the main stage. Doing so, a signal sufficient to be read by the microcontroller could be produced. The performed calculations proved that for a system consisting of at least four photodiodes, it is possible to determine precise location of a gamma radiation source. CONCLUSIONS: After successful first experiments with a single diode, the optimal spatial arrangement of the diodes as well as their orientation will be determined to achieve a compact, cost effective yet fast, and accurate sensor device for every-day clinical application.

13.
Sci Data ; 10(1): 733, 2023 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-37865668

RESUMEN

The endoscopic examination of subepithelial vascular patterns within the vocal fold is crucial for clinicians seeking to distinguish between benign lesions and laryngeal cancer. Among innovative techniques, Contact Endoscopy combined with Narrow Band Imaging (CE-NBI) offers real-time visualization of these vascular structures. Despite the advent of CE-NBI, concerns have arisen regarding the subjective interpretation of its images. As a result, several computer-based solutions have been developed to address this issue. This study introduces the CE-NBI data set, the first publicly accessible data set that features enhanced and magnified visualizations of subepithelial blood vessels within the vocal fold. This data set encompasses 11144 images from 210 adult patients with pathological vocal fold conditions, where CE-NBI images are annotated using three distinct label categories. The data set has proven invaluable for numerous clinical assessments geared toward diagnosing laryngeal cancer using Optical Biopsy. Furthermore, given its versatility for various image analysis tasks, we have devised and implemented diverse image classification scenarios using Machine Learning (ML) approaches to address critical clinical challenges in assessing laryngeal lesions.


Asunto(s)
Neoplasias Laríngeas , Laringoscopía , Laringe , Adulto , Humanos , Neoplasias Laríngeas/diagnóstico por imagen , Neoplasias Laríngeas/patología , Laringe/diagnóstico por imagen , Imagen de Banda Estrecha , Pliegues Vocales/diagnóstico por imagen
14.
Diagnostics (Basel) ; 13(18)2023 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-37761240

RESUMEN

BACKGROUND: Thyroid nodules are very common. In most cases, they are benign, but they can be malignant in a low percentage of cases. The accurate assessment of these nodules is critical to choosing the next diagnostic steps and potential treatment. Ultrasound (US) imaging, the primary modality for assessing these nodules, can lack objectivity due to varying expertise among physicians. This leads to observer variability, potentially affecting patient outcomes. PURPOSE: This study aims to assess the potential of a Decision Support System (DSS) in reducing these variabilities for thyroid nodule detection and region estimation using US images, particularly in lesser experienced physicians. METHODS: Three physicians with varying levels of experience evaluated thyroid nodules on US images, focusing on nodule detection and estimating cystic and solid regions. The outcomes were compared to those obtained from a DSS for comparison. Metrics such as classification match percentage and variance percentage were used to quantify differences. RESULTS: Notable disparities exist between physician evaluations and the DSS assessments: the overall classification match percentage was just 19.2%. Individually, Physicians 1, 2, and 3 had match percentages of 57.6%, 42.3%, and 46.1% with the DSS, respectively. Variances in assessments highlight the subjectivity and observer variability based on physician experience levels. CONCLUSIONS: The evident variability among physician evaluations underscores the need for supplementary decision-making tools. Given its consistency, the CAD offers potential as a reliable "second opinion" tool, minimizing human-induced variabilities in the critical diagnostic process of thyroid nodules using US images. Future integration of such systems could bolster diagnostic precision and improve patient outcomes.

15.
Comput Biol Med ; 164: 107272, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37515873

RESUMEN

BACKGROUND: The shift towards minimally invasive surgery is associated with a significant reduction of tactile information available to the surgeon, with compensation strategies ranging from vision-based techniques to the integration of sensing concepts into surgical instruments. Tactile information is vital for palpation tasks such as the differentiation of tissues or the characterisation of surfaces. This work investigates a new sensing approach to derive palpation-related information from vibration signals originating from instrument-tissue-interactions. METHODS: We conducted a feasibility study to differentiate three non-animal and three animal tissue specimens based on palpation of the surface. A sensor configuration was mounted at the proximal end of a standard instrument opposite the tissue-interaction point. Vibro-acoustic signals of 1680 palpation events were acquired, and the time-varying spectrum was computed using Continuous-Wavelet-Transformation. For validation, nine spectral energy-related features were calculated for a subsequent classification using linear Support Vector Machine and k-Nearest-Neighbor. RESULTS: Indicators derived from the vibration signal are highly stable in a set of palpations belonging to the same tissue specimen, regardless of the palpating subject. Differences in the surface texture of the tissue specimens reflect in those indicators and can serve as a basis for differentiation. The classification following a supervised learning approach shows an accuracy of >93.8% for the three-tissue classification tasks and decreases to 78.8% for a combination of all six tissues. CONCLUSIONS: Simple features derived from the vibro-acoustic signals facilitate the differentiation between biological tissues, showing the potential of the presented approach to provide information related to the interacting tissue. The results encourage further investigation of a yet little-exploited source of information in minimally invasive surgery.


Asunto(s)
Acústica , Tacto , Vibración , Palpación , Procedimientos Quirúrgicos Mínimamente Invasivos
16.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 3299-3302, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-36086117

RESUMEN

Healthcare Innovation ideas originating from biomedical engineering departments are rarely based on a deep understanding of a problem, but are often based on coming up with an engineering solution that does not meet an Unmet Clinical Need, is too complicated, bulky, costly, and does not consider global developments. For an impactful innovation design it is essential however to properly understand the clinical issues, forward project the effect of exponential technologies and other global developments. Health and healthcare are in need of disruptive ideas for preventive, predictive, personalised solutions that engage the individuals to pave the way towards real healthcare. We have adapted a novel meta-methodology for dedicated use with health related applications and have used it validating start-up ideas and also during a semester long lecture/seminar classroom setup with amazing results. Clinical Relevance - This novel health dedicated meta-methodology is dependent on interdisciplinary team and innovation work and heavily relies on a good understanding of the current clinical processes and needs as well as on a future projection of global health delivery developments. The clinical perspective is essential and meaning- and impactful innovation can only be developed validating desirability feasibility and viability which needs clinical- engineering/technical-as well as economic expertise.


Asunto(s)
Bioingeniería , Ingeniería Biomédica , Ingeniería Biomédica/educación , Atención a la Salud , Ingeniería , Humanos , Estudios Interdisciplinarios
17.
Front Public Health ; 10: 851380, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35692334

RESUMEN

Industry 4.0 and digital transformation will likely come with an era of changes for most manufacturers and tech industries, and even healthcare delivery will likely be affected. A few trends are already foreseeable such as an increased number of patients, advanced technologies, different health-related business models, increased costs, revised ethics, and regulatory procedures. Moreover, cybersecurity, digital invoices, price transparency, improving patient experience, management of big data, and the need for a revised education are challenges in response to digital transformation. Indeed, forward-looking innovation about exponential technologies and their effect on healthcare is now gaining momentum. Thus, we developed a framework, followed by an online survey, to investigate key areas, analyze and visualize future-oriented developments concerning technologies and innovative business models while attempting to translate visions into a strategy toward healthcare democratization. When forecasting the future of health in a short and long-term perspective, results showed that digital healthcare, data management, electronics, and sensors were the most common predictions, followed by artificial intelligence in clinical diagnostic and in which hospitals and homes would be the places of primary care. Shifting from a reactive to a proactive digital ecosystem, the focus on prevention, quality, and faster care accessibility are the novel value propositions toward democratization and digitalization of patient-centered services. Longevity will translate into increased neurodegenerative, chronic diseases, and mental illnesses, becoming severe issues for a future healthcare setup. Besides, data privacy, big data management, and novel regulatory procedures were considered as potential problems resulting from digital transformation. However, a revised education is needed to address these issues while preparing future health professionals. The "P4 of health", a novel business model that is outcome-based oriented, awareness and acceptance of technologies to support public health, a different mindset that is proactive and future-oriented, and an interdisciplinary setting to merge clinical and technological advances would be key to a novel healthcare ecosystem. Lastly, based on the developed framework, we aim to conduct regular surveys to capture up-to-date technological trends, sustainable health-related business models, and interdependencies. The engagement of stakeholders through awareness and participation is the key to recognizing and improving healthcare needs and services.


Asunto(s)
Inteligencia Artificial , Trastornos Mentales , Atención a la Salud , Ecosistema , Hospitales , Humanos
18.
Diagnostics (Basel) ; 12(5)2022 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-35626417

RESUMEN

One of the most applied imaging methods in medicine is endoscopy. A highly specialized image modality has been developed since the first modern endoscope, the "Lichtleiter" of Bozzini was introduced in the early 19th century. Multiple medical disciplines use endoscopy for diagnostics or to visualize and support therapeutic procedures. Therefore, the shapes, functionalities, handling concepts, and the integrated and surrounding technology of endoscopic systems were adapted to meet these dedicated medical application requirements. This survey gives an overview of modern endoscopic technology's state of the art. Therefore, the portfolio of several manufacturers with commercially available products on the market was screened and summarized. Additionally, some trends for upcoming developments were collected.

19.
Front Public Health ; 9: 715768, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34540788

RESUMEN

The typical curriculum of training and educating future clinicians, biomedical engineers, health IT, and artificial intelligence experts lacks needed twenty first-century skills like problem-solving, stakeholder empathy, curiosity stimulation, entrepreneurship, and health economics, which are essential generators and are pre-requirements for creating intentional disruptive innovations. Moreover, the translation from research to a valuable and affordable product/process innovation is not formalized by the current teachings that focus on short-term rather than long-term developments, leading to inaccurate and incremental forecasting on the future of healthcare and longevity. The Stanford Biodesign approach of unmet clinical need detection would be an excellent starting methodology for health-related innovation work, although unfortunately not widely taught yet. We have developed a novel lecture titled HealthTec Innovation Design (HTID) offered in an interdisciplinary setup to medical students and biomedical engineers. It teaches a future-oriented view and the application and effects of exponential trends. We implemented a novel approach using the Purpose Launchpad meta-methodology combined with other innovation generation tools to define, experiment, and validate existing project ideas. As part of the process of defining the novel curriculum, we used experimentation methods, like a global science fiction event to create a comic book with Future Health stories and an Innovation Think Tank Certification Program of a large medical technology company that is focused on identifying future health opportunities. We conducted before and after surveys and concluded that the proposed initiatives were impactful in developing an innovative design thinking approach. Participants' awareness and enthusiasm were raised, including their willingness to implement taught skills, values, and methods in their working projects. We conclude that a new curriculum based on HTID is essential and needed to move the needle of healthcare activities from treating sickness to maintaining health.


Asunto(s)
Emprendimiento , Estudiantes de Medicina , Inteligencia Artificial , Curriculum , Humanos , Estudios Interdisciplinarios
20.
Int J Comput Assist Radiol Surg ; 16(10): 1683-1697, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34652603

RESUMEN

PURPOSE: Percutaneous needle insertion is one of the most common minimally invasive procedures. The clinician's experience and medical imaging support are essential to the procedure's safety. However, imaging comes with inaccuracies due to artifacts, and therefore sensor-based solutions were proposed to improve accuracy. However, sensors are usually embedded in the needle tip, leading to design limitations. A novel concept was proposed for capturing tip-tissue interaction information through audio sensing, showing promising results for needle guidance. This work demonstrates that this audio approach can provide important puncture information by comparing audio and force signal dynamics during insertion. METHODS: An experimental setup for inserting a needle into soft tissue was prepared. Audio and force signals were synchronously recorded at four different insertion velocities, and a dataset of 200 recordings was acquired. Indicators related to different aspects of the force and audio were compared through signal-to-signal and event-to-event correlation analysis. RESULTS: High signal-to-signal correlations between force and audio indicators regardless of the insertion velocity were obtained. The force curvature indicator obtained the best correlation performances to audio with more than [Formula: see text] of the correlations higher than 0.6. The event-to-event correlation analysis shows that a puncture event in the force is generally identifiable in audio and that their intensities firmly related. CONCLUSIONS: Audio contains valuable information for monitoring needle tip/tissue interaction. Significant dynamics obtained from a well-known sensor as force can also be extracted from audio, regardless of insertion velocities.


Asunto(s)
Agujas , Punciones , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA