Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Appl Environ Microbiol ; 74(5): 1316-23, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18165371

RESUMEN

Allelic replacement in staphylococci is frequently aided by antibiotic resistance markers that replace the gene(s) of interest. In multiply modified strains, the number of mutated genes usually correlates with the number of selection markers in the strain's chromosome. Site-specific recombination systems are capable of eliminating such markers, if they are flanked by recombinase recognition sites. In this study, a Cre-lox setting was established that allowed the efficient removal of resistance genes from the genomes of Staphylococcus carnosus and S. aureus. Two cassettes conferring resistance to erythromycin or kanamycin were flanked with wild-type or mutant lox sites, respectively, and used to delete single genes and an entire operon. After transformation of the cells with a newly constructed cre expression plasmid (pRAB1), genomic eviction of the resistance genes was observed in approximately one out of ten candidates analyzed and subsequently verified by PCR. Due to its thermosensitive origin of replication, the plasmid was then easily eliminated at nonpermissive temperatures. We anticipate that the system presented here will prove useful for generating markerless deletion mutants in staphylococci.


Asunto(s)
Farmacorresistencia Microbiana/genética , Eliminación de Gen , Ingeniería Genética/métodos , Marcadores Genéticos/genética , Integrasas/metabolismo , Staphylococcus/genética , Secuencia de Bases , Vectores Genéticos/genética , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa
2.
Front Plant Sci ; 8: 1382, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28848584

RESUMEN

The GLABRA3 gene is a major regulator of trichome patterning in Arabidopsis thaliana. The regulatory regions important for the trichome-specific expression of GL3 have not been characterized yet. In this study, we used a combination of marker and rescue constructs to determine the relevant promoter regions. We demonstrate that a 1 kb 5' region combined with the second intron is sufficient to rescue the trichome mutant phenotype of gl3 egl3 mutants. Swap experiments of the second intron suggest that it is not sufficient to generally enhance the expression level of GL3. This implies that the second intron contains regulatory regions for the temporal and spatial regulation of GL3. The corresponding GUS-marker constructs revealed trichome-specific expression in young trichomes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA