Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Diabetes ; 2021 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-34702781

RESUMEN

Increased oxidative stress in glomerular endothelial cells (GEnCs) contributes to early diabetic kidney disease (DKD). While mitochondrial respiratory complex IV activity is reduced in DKD, it remains unclear whether this is a driver or a consequence of oxidative stress in GEnCs. Synthesis of cytochrome C oxidase 2 (SCO2), a key metallochaperone in the electron transport chain, is critical to the biogenesis and assembly of subunits required for functional respiratory complex IV activity. Here, we investigated the effects of Sco2 hypomorphs (Sco2 KO/KI , Sco2 KI/KI ), with a functional loss of SCO2, in the progression of DKD using a murine model of Type II Diabetes Mellitus, db/db mice. Diabetic Sco2 KO/KI and Sco2 KI/KI hypomorphs exhibited a reduction in complex IV activity, but an improvement in albuminuria, serum creatinine, and histomorphometric evidence of early DKD as compared to db/db mice. Single-nucleus RNA sequencing with gene set enrichment analysis of differentially expressed genes in the endothelial cluster of Sco2 KO/KI ;db/db mice demonstrated an increase in genes involved in VEGF-VEGFR2 signaling and reduced oxidative stress as compared to db/db mice. These data suggest that reduced complex IV activity due to a loss of functional SCO2 might be protective in GEnCs in early DKD.

2.
Diabetes ; 2021 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-34957485

RESUMEN

Increased oxidative stress in glomerular endothelial cells (GEnCs) contributes to early diabetic kidney disease (DKD). While mitochondrial respiratory complex IV activity is reduced in DKD, it remains unclear whether this is a driver or a consequence of oxidative stress in GEnCs. Synthesis of cytochrome C oxidase 2 (SCO2), a key metallochaperone in the electron transport chain, is critical to the biogenesis and assembly of subunits required for functional respiratory complex IV activity. Here, we investigated the effects of Sco2 hypomorphs (Sco2KO/KI, Sco2KI/KI), with a functional loss of SCO2, in the progression of DKD using a murine model of Type II Diabetes Mellitus, db/db mice. Diabetic Sco2KO/KI and Sco2KI/KI hypomorphs exhibited a reduction in complex IV activity, but an improvement in albuminuria, serum creatinine, and histomorphometric evidence of early DKD as compared to db/db mice. Single-nucleus RNA sequencing with gene set enrichment analysis of differentially expressed genes in the endothelial cluster of Sco2KO/KI;db/db mice demonstrated an increase in genes involved in VEGF-VEGFR2 signaling and reduced oxidative stress as compared to db/db mice. These data suggest that reduced complex IV activity due to a loss of functional SCO2 might be protective in GEnCs in early DKD.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA