Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Hum Mol Genet ; 32(17): 2717-2734, 2023 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-37369025

RESUMEN

Inherited disorders of mitochondrial metabolism, including isolated methylmalonic aciduria, present unique challenges to energetic homeostasis by disrupting energy-producing pathways. To better understand global responses to energy shortage, we investigated a hemizygous mouse model of methylmalonyl-CoA mutase (Mmut)-type methylmalonic aciduria. We found Mmut mutant mice to have reduced appetite, energy expenditure and body mass compared with littermate controls, along with a relative reduction in lean mass but increase in fat mass. Brown adipose tissue showed a process of whitening, in line with lower body surface temperature and lesser ability to cope with cold challenge. Mutant mice had dysregulated plasma glucose, delayed glucose clearance and a lesser ability to regulate energy sources when switching from the fed to fasted state, while liver investigations indicated metabolite accumulation and altered expression of peroxisome proliferator-activated receptor and Fgf21-controlled pathways. Together, these shed light on the mechanisms and adaptations behind energy imbalance in methylmalonic aciduria and provide insight into metabolic responses to chronic energy shortage, which may have important implications for disease understanding and patient management.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos , Ratones , Animales , Errores Innatos del Metabolismo de los Aminoácidos/genética , Errores Innatos del Metabolismo de los Aminoácidos/metabolismo , Metabolismo Energético/genética , Hígado/metabolismo
2.
Am J Hum Genet ; 108(7): 1283-1300, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34214447

RESUMEN

Most rare clinical missense variants cannot currently be classified as pathogenic or benign. Deficiency in human 5,10-methylenetetrahydrofolate reductase (MTHFR), the most common inherited disorder of folate metabolism, is caused primarily by rare missense variants. Further complicating variant interpretation, variant impacts often depend on environment. An important example of this phenomenon is the MTHFR variant p.Ala222Val (c.665C>T), which is carried by half of all humans and has a phenotypic impact that depends on dietary folate. Here we describe the results of 98,336 variant functional-impact assays, covering nearly all possible MTHFR amino acid substitutions in four folinate environments, each in the presence and absence of p.Ala222Val. The resulting atlas of MTHFR variant effects reveals many complex dependencies on both folinate and p.Ala222Val. MTHFR atlas scores can distinguish pathogenic from benign variants and, among individuals with severe MTHFR deficiency, correlate with age of disease onset. Providing a powerful tool for understanding structure-function relationships, the atlas suggests a role for a disordered loop in retaining cofactor at the active site and identifies variants that enable escape of inhibition by S-adenosylmethionine. Thus, a model based on eight MTHFR variant effect maps illustrates how shifting landscapes of environment- and genetic-background-dependent missense variation can inform our clinical, structural, and functional understanding of MTHFR deficiency.


Asunto(s)
Metilenotetrahidrofolato Reductasa (NADPH2)/genética , Mutación Missense , Sustitución de Aminoácidos , Análisis Mutacional de ADN , Diploidia , Biblioteca de Genes , Genotipo , Humanos , Metilenotetrahidrofolato Reductasa (NADPH2)/deficiencia , Metilenotetrahidrofolato Reductasa (NADPH2)/fisiología , Saccharomyces cerevisiae/genética
3.
J Inherit Metab Dis ; 46(3): 421-435, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36371683

RESUMEN

Methylmalonyl-coenzyme A (CoA) mutase (MMUT)-type methylmalonic aciduria is a rare inherited metabolic disease caused by the loss of function of the MMUT enzyme. Patients develop symptoms resembling those of primary mitochondrial disorders, but the underlying causes of mitochondrial dysfunction remain unclear. Here, we examined environmental and genetic interactions in MMUT deficiency using a combination of computational modeling and cellular models to decipher pathways interacting with MMUT. Immortalized fibroblast (hTERT BJ5ta) MMUT-KO (MUTKO) clones displayed a mild mitochondrial impairment in standard glucose-based medium, but they did not to show increased reliance on respiratory metabolism nor reduced growth or viability. Consistently, our modeling predicted MUTKO specific growth phenotypes only for lower extracellular glutamine concentrations. Indeed, two of three MMUT-deficient BJ5ta cell lines showed a reduced viability in glutamine-free medium. Further, growth on 183 different carbon and nitrogen substrates identified increased NADH (nicotinamide adenine dinucleotide) metabolism of BJ5ta and HEK293 MUTKO cells compared with controls on purine- and glutamine-based substrates. With this knowledge, our modeling predicted 13 reactions interacting with MMUT that potentiate an effect on growth, primarily those of secondary oxidation of propionyl-CoA, oxidative phosphorylation and oxygen diffusion. Of these, we validated 3-hydroxyisobutytyl-CoA hydrolase (HIBCH) in the secondary propionyl-CoA oxidation pathway. Altogether, these results suggest compensation for the loss of MMUT function by increasing anaplerosis through glutamine or by diverting flux away from MMUT through the secondary propionyl-CoA oxidation pathway, which may have therapeutic relevance.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos , Enfermedades Mitocondriales , Humanos , Células HEK293 , Errores Innatos del Metabolismo de los Aminoácidos/diagnóstico , Enfermedades Mitocondriales/metabolismo , Metilmalonil-CoA Mutasa , Ácido Metilmalónico/metabolismo
4.
J Inherit Metab Dis ; 46(3): 406-420, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36680553

RESUMEN

Vitamin B12 (cobalamin, Cbl) is required as a cofactor by two human enzymes, 5-methyltetrahydrofolate-homocysteine methyltransferase (MTR) and methylmalonyl-CoA mutase (MMUT). Within the body, a vast array of transporters, enzymes and chaperones are required for the generation and delivery of these cofactor forms. How they perform these functions is dictated by the structure and interactions of the proteins involved, the molecular bases of which are only now being elucidated. In this review, we highlight recent insights into human Cbl metabolism and address open questions in the field by employing a protein structure and interactome based perspective. We discuss how three very similar proteins-haptocorrin, intrinsic factor and transcobalamin-exploit slight structural differences and unique ligand receptor interactions to effect selective Cbl absorption and internalisation. We describe recent advances in the understanding of how endocytosed Cbl is transported across the lysosomal membrane and the implications of the recently solved ABCD4 structure. We detail how MMACHC and MMADHC cooperate to modify and target cytosolic Cbl to the client enzymes MTR and MMUT using ingenious modifications to an ancient nitroreductase fold, and how MTR and MMUT link with their accessory enzymes to sustainably harness the supernucleophilic potential of Cbl. Finally, we provide an outlook on how future studies may combine structural and interactome based approaches and incorporate knowledge of post-translational modifications to bring further insights.


Asunto(s)
Metilmalonil-CoA Mutasa , Vitamina B 12 , Humanos , Vitamina B 12/metabolismo , Metilmalonil-CoA Mutasa/metabolismo , Transporte Biológico , Chaperonas Moleculares , Transportadoras de Casetes de Unión a ATP/metabolismo , Oxidorreductasas/metabolismo
5.
Hum Genet ; 141(7): 1253-1267, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34796408

RESUMEN

Pathogenic variants in MMAB cause cblB-type methylmalonic aciduria, an autosomal-recessive disorder of propionate metabolism. MMAB encodes ATP:cobalamin adenosyltransferase, using ATP and cob(I)alamin to create 5'-deoxyadenosylcobalamin (AdoCbl), the cofactor of methylmalonyl-CoA mutase (MMUT). We identified bi-allelic disease-causing variants in MMAB in 97 individuals with cblB-type methylmalonic aciduria, including 33 different and 16 novel variants. Missense changes accounted for the most frequent pathogenic alleles (p.(Arg186Trp), N = 57; p.(Arg191Trp), N = 19); while c.700C > T (p.(Arg234*)) was the most frequently identified truncating variant (N = 14). In fibroblasts from 76 affected individuals, the ratio of propionate incorporation in the presence and absence of hydroxocobalamin (PI ratio) was associated to clinical cobalamin responsiveness and later disease onset. We found p.(Arg234*) to be associated with cobalamin responsiveness in vitro, and clinically with later onset; p.(Arg186Trp) and p.(Arg191Trp) showed no clear cobalamin responsiveness and early onset. Mapping these and novel variants onto the MMAB structure revealed their potential to affect ATP and AdoCbl binding. Follow-up biochemical characterization of recombinant MMAB identified its three active sites to be equivalent for ATP binding, determined by fluorescence spectroscopy (Kd = 21 µM) and isothermal calorimetry (Kd = 14 µM), but function as two non-equivalent AdoCbl binding sites (Kd1 = 0.55 µM; Kd2 = 8.4 µM). Ejection of AdoCbl was activated by ATP (Ka = 24 µM), which was sensitized by the presence of MMUT (Ka = 13 µM). This study expands the landscape of pathogenic MMAB variants, provides association of in vitro and clinical responsiveness, and facilitates insight into MMAB function, enabling better disease understanding.


Asunto(s)
Transferasas Alquil y Aril , Errores Innatos del Metabolismo de los Aminoácidos , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Transferasas Alquil y Aril/metabolismo , Alelos , Errores Innatos del Metabolismo de los Aminoácidos/genética , Errores Innatos del Metabolismo de los Aminoácidos/patología , Humanos , Mutación , Propionatos , Proteínas Proto-Oncogénicas c-cbl/metabolismo , Vitamina B 12/metabolismo
6.
Cell Mol Life Sci ; 78(21-22): 6851-6867, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34524466

RESUMEN

Mitochondria-the intracellular powerhouse in which nutrients are converted into energy in the form of ATP or heat-are highly dynamic, double-membraned organelles that harness a plethora of cellular functions that sustain energy metabolism and homeostasis. Exciting new discoveries now indicate that the maintenance of this ever changing and functionally pleiotropic organelle is particularly relevant in terminally differentiated cells that are highly dependent on aerobic metabolism. Given the central role in maintaining metabolic and physiological homeostasis, dysregulation of the mitochondrial network might therefore confer a potentially devastating vulnerability to high-energy requiring cell types, contributing to a broad variety of hereditary and acquired diseases. In this Review, we highlight the biological functions of mitochondria-localized enzymes from the perspective of understanding-and potentially reversing-the pathophysiology of inherited disorders affecting the homeostasis of the mitochondrial network and cellular metabolism. Using methylmalonic acidemia as a paradigm of complex mitochondrial dysfunction, we discuss how mitochondrial directed-signaling circuitries govern the homeostasis and physiology of specialized cell types and how these may be disturbed in disease. This Review also provides a critical analysis of affected tissues, potential molecular mechanisms, and novel cellular and animal models of methylmalonic acidemia which are being used to develop new therapeutic options for this disease. These insights might ultimately lead to new therapeutics, not only for methylmalonic acidemia, but also for other currently intractable mitochondrial diseases, potentially transforming our ability to regulate homeostasis and health.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos/metabolismo , Mitocondrias/metabolismo , Enfermedades Mitocondriales/metabolismo , Mitofagia/fisiología , Animales , Metabolismo Energético/fisiología , Homeostasis/fisiología , Humanos , Orgánulos/metabolismo , Transducción de Señal/fisiología
7.
Mol Genet Metab ; 130(3): 179-182, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32414565

RESUMEN

MTHFD1 is a trifunctional protein containing 10-formyltetrahydrofolate synthetase, 5,10-methenyltetrahydrofolate cyclohydrolase and 5,10-methylenetetrahydrofolate dehydrogenase activities. It is encoded by MTHFD1 and functions in the cytoplasmic folate cycle where it is involved in de novo purine synthesis, synthesis of thymidylate and remethylation of homocysteine to methionine. Since the first reported case of severe combined immunodeficiency resulting from MTHFD1 mutations, seven additional patients ascertained through molecular analysis have been reported with variable phenotypes, including megaloblastic anemia, atypical hemolytic uremic syndrome, hyperhomocysteinemia, microangiopathy, infections and autoimmune diseases. We determined the level of MTHFD1 expression and dehydrogenase specific activity in cell extracts from cultured fibroblasts of three previously reported patients, as well as a patient with megaloblastic anemia and recurrent infections with compound heterozygous MTHFD1 variants that were predicted to be deleterious. MTHFD1 protein expression determined by Western blotting in fibroblast extracts from three of the patients was markedly decreased compared to expression in wild type cells (between 4.8 and 14.3% of mean control values). MTHFD1 expression in the fourth patient was approximately 44% of mean control values. There was no detectable methylenetetrahydrofolate dehydrogenase specific activity in extracts from any of the four patients. This is the first measurement of MTHFD1 function in MTHFD1 deficient patients and confirms the previous molecular diagnoses.


Asunto(s)
Fibroblastos/patología , Deficiencia de Ácido Fólico/diagnóstico , Metilenotetrahidrofolato Deshidrogenasa (NADP)/genética , Metilenotetrahidrofolato Deshidrogenasa (NADP)/metabolismo , Antígenos de Histocompatibilidad Menor/genética , Antígenos de Histocompatibilidad Menor/metabolismo , Mutación , Inmunodeficiencia Combinada Grave/diagnóstico , Estudios de Casos y Controles , Células Cultivadas , Fibroblastos/metabolismo , Deficiencia de Ácido Fólico/genética , Deficiencia de Ácido Fólico/metabolismo , Humanos , Inmunodeficiencia Combinada Grave/genética , Inmunodeficiencia Combinada Grave/metabolismo
8.
J Inherit Metab Dis ; 42(4): 673-685, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30693532

RESUMEN

Vitamin B12 (cobalamin, Cbl) is a nutrient essential to human health. Due to its complex structure and dual cofactor forms, Cbl undergoes a complicated series of absorptive and processing steps before serving as cofactor for the enzymes methylmalonyl-CoA mutase and methionine synthase. Methylmalonyl-CoA mutase is required for the catabolism of certain (branched-chain) amino acids into an anaplerotic substrate in the mitochondrion, and dysfunction of the enzyme itself or in production of its cofactor adenosyl-Cbl result in an inability to successfully undergo protein catabolism with concomitant mitochondrial energy disruption. Methionine synthase catalyzes the methyl-Cbl dependent (re)methylation of homocysteine to methionine within the methionine cycle; a reaction required to produce this essential amino acid and generate S-adenosylmethionine, the most important cellular methyl-donor. Disruption of methionine synthase has wide-ranging implications for all methylation-dependent reactions, including epigenetic modification, but also for the intracellular folate pathway, since methionine synthase uses 5-methyltetrahydrofolate as a one-carbon donor. Folate-bound one-carbon units are also required for deoxythymidine monophosphate and de novo purine synthesis; therefore, the flow of single carbon units to each of these pathways must be regulated based on cellular needs. This review provides an overview on Cbl metabolism with a brief description of absorption and intracellular metabolic pathways. It also provides a description of folate-mediated one-carbon metabolism and its intersection with Cbl at the methionine cycle. Finally, a summary of recent advances in understanding of how both pathways are regulated is presented.


Asunto(s)
Deficiencia de Ácido Fólico/metabolismo , Deficiencia de Vitamina B 12/metabolismo , 5-Metiltetrahidrofolato-Homocisteína S-Metiltransferasa/metabolismo , Animales , Ácido Fólico/farmacología , Humanos , Metilmalonil-CoA Mutasa/metabolismo , Vitamina B 12/farmacología
9.
J Inherit Metab Dis ; 42(2): 333-352, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30773687

RESUMEN

AIM: To explore the clinical presentation, course, treatment and impact of early treatment in patients with remethylation disorders from the European Network and Registry for Homocystinurias and Methylation Defects (E-HOD) international web-based registry. RESULTS: This review comprises 238 patients (cobalamin C defect n = 161; methylenetetrahydrofolate reductase deficiency n = 50; cobalamin G defect n = 11; cobalamin E defect n = 10; cobalamin D defect n = 5; and cobalamin J defect n = 1) from 47 centres for whom the E-HOD registry includes, as a minimum, data on medical history and enrolment visit. The duration of observation was 127 patient years. In 181 clinically diagnosed patients, the median age at presentation was 30 days (range 1 day to 42 years) and the median age at diagnosis was 3.7 months (range 3 days to 56 years). Seventy-five percent of pre-clinically diagnosed patients with cobalamin C disease became symptomatic within the first 15 days of life. Total homocysteine (tHcy), amino acids and urinary methylmalonic acid (MMA) were the most frequently assessed disease markers; confirmatory diagnostics were mainly molecular genetic studies. Remethylation disorders are multisystem diseases dominated by neurological and eye disease and failure to thrive. In this cohort, mortality, thromboembolic, psychiatric and renal disease were rarer than reported elsewhere. Early treatment correlates with lower overall morbidity but is less effective in preventing eye disease and cognitive impairment. The wide variation in treatment hampers the evaluation of particular therapeutic modalities. CONCLUSION: Treatment improves the clinical course of remethylation disorders and reduces morbidity, especially if started early, but neurocognitive and eye symptoms are less responsive. Current treatment is highly variable. This study has the inevitable limitations of a retrospective, registry-based design.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos/diagnóstico , Errores Innatos del Metabolismo de los Aminoácidos/terapia , Homocistinuria/metabolismo , Metilenotetrahidrofolato Reductasa (NADPH2)/deficiencia , Espasticidad Muscular/metabolismo , Vitamina B 12/metabolismo , Adolescente , Adulto , Edad de Inicio , Niño , Preescolar , Estudios Transversales , Progresión de la Enfermedad , Europa (Continente) , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Metilación , Metilenotetrahidrofolato Reductasa (NADPH2)/metabolismo , Ácido Metilmalónico/orina , Fenotipo , Embarazo , Trastornos Psicóticos/metabolismo , Sistema de Registros , Estudios Retrospectivos , Adulto Joven
10.
J Biol Chem ; 292(28): 11980-11991, 2017 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-28572511

RESUMEN

Vitamin B12 (cobalamin (Cbl)), in the cofactor forms methyl-Cbl and adenosyl-Cbl, is required for the function of the essential enzymes methionine synthase and methylmalonyl-CoA mutase, respectively. Cbl enters mammalian cells by receptor-mediated endocytosis of protein-bound Cbl followed by lysosomal export of free Cbl to the cytosol and further processing to these cofactor forms. The integral membrane proteins LMBD1 and ABCD4 are required for lysosomal release of Cbl, and mutations in the genes LMBRD1 and ABCD4 result in the cobalamin metabolism disorders cblF and cblJ. We report a new (fifth) patient with the cblJ disorder who presented at 7 days of age with poor feeding, hypotonia, methylmalonic aciduria, and elevated plasma homocysteine and harbored the mutations c.1667_1668delAG [p.Glu556Glyfs*27] and c.1295G>A [p.Arg432Gln] in the ABCD4 gene. Cbl cofactor forms are decreased in fibroblasts from this patient but could be rescued by overexpression of either ABCD4 or, unexpectedly, LMBD1. Using a sensitive live-cell FRET assay, we demonstrated selective interaction between ABCD4 and LMBD1 and decreased interaction when ABCD4 harbored the patient mutations p.Arg432Gln or p.Asn141Lys or when artificial mutations disrupted the ATPase domain. Finally, we showed that ABCD4 lysosomal targeting depends on co-expression of, and interaction with, LMBD1. These data broaden the patient and mutation spectrum of cblJ deficiency, establish a sensitive live-cell assay to detect the LMBD1-ABCD4 interaction, and confirm the importance of this interaction for proper intracellular targeting of ABCD4 and cobalamin cofactor synthesis.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/genética , Errores Innatos del Metabolismo de los Aminoácidos/genética , Lisosomas/metabolismo , Errores Innatos del Metabolismo/genética , Modelos Moleculares , Mutación , Proteínas de Transporte Nucleocitoplasmático/genética , Transportadoras de Casetes de Unión a ATP/química , Transportadoras de Casetes de Unión a ATP/deficiencia , Transportadoras de Casetes de Unión a ATP/metabolismo , Errores Innatos del Metabolismo de los Aminoácidos/metabolismo , Errores Innatos del Metabolismo de los Aminoácidos/patología , Sustitución de Aminoácidos , Dominio Catalítico , Línea Celular Transformada , Células Cultivadas , Células HeLa , Humanos , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Lisosomas/enzimología , Lisosomas/patología , Errores Innatos del Metabolismo/metabolismo , Errores Innatos del Metabolismo/patología , Simulación del Acoplamiento Molecular , Proteínas de Transporte Nucleocitoplasmático/química , Proteínas de Transporte Nucleocitoplasmático/deficiencia , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Transporte de Proteínas , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Homología Estructural de Proteína , Vitamina B 12/metabolismo
11.
Hum Mutat ; 38(8): 988-1001, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28497574

RESUMEN

Mutations in the human MMAA gene cause the metabolic disorder cblA-type methylmalonic aciduria (MMA), although knowledge of the mechanism of dysfunction remains lacking. MMAA regulates the incorporation of the cofactor adenosylcobalamin (AdoCbl), generated from the MMAB adenosyltransferase, into the destination enzyme methylmalonyl-CoA mutase (MUT). This function of MMAA depends on its GTPase activity, which is stimulated by an interaction with MUT. Here, we present 67 new patients with cblA-type MMA, identifying 19 novel mutations. We biochemically investigated how missense mutations in MMAA in 22 patients lead to disease. About a third confer instability to the recombinant protein in bacterial and human expression systems. All 15 purified mutant proteins demonstrated wild-type like intrinsic GTPase activity and only one (p.Asp292Val), where the mutation is in the GTP binding domain, revealed decreased GTP binding. However, all mutations strongly decreased functional association with MUT by reducing GTPase activity stimulation upon incubation with MUT, while nine mutant proteins additionally lost the ability to physically bind MUT. Finally, all mutations interfered with gating the transfer of AdoCbl from MMAB to MUT. This work suggests loss of functional interaction between MMAA and MUT as a disease-causing mechanism that impacts processing and assembly of a cofactor to its destination enzyme.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos/metabolismo , Proteínas Mitocondriales/metabolismo , Errores Innatos del Metabolismo de los Aminoácidos/genética , Niño , Preescolar , Cobamidas/metabolismo , Femenino , Genotipo , Humanos , Lactante , Recién Nacido , Masculino , Proteínas de Transporte de Membrana/metabolismo , Metilmalonil-CoA Mutasa/metabolismo , Proteínas Mitocondriales/genética , Mutación , Mutación Missense/genética , Unión Proteica
12.
J Biol Chem ; 291(39): 20563-73, 2016 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-27519416

RESUMEN

Methylmalonic aciduria (MMAuria), caused by deficiency of methylmalonyl-CoA mutase (MUT), usually presents in the newborn period with failure to thrive and metabolic crisis leading to coma or even death. Survivors remain at risk of metabolic decompensations and severe long term complications, notably renal failure and neurological impairment. We generated clinically relevant mouse models of MMAuria using a constitutive Mut knock-in (KI) allele based on the p.Met700Lys patient mutation, used homozygously (KI/KI) or combined with a knockout allele (KO/KI), to study biochemical and clinical MMAuria disease aspects. Transgenic Mut(ki/ki) and Mut(ko/ki) mice survive post-weaning, show failure to thrive, and show increased methylmalonic acid, propionylcarnitine, odd chain fatty acids, and sphingoid bases, a new potential biomarker of MMAuria. Consistent with genetic dosage, Mut(ko/ki) mice have lower Mut activity, are smaller, and show higher metabolite levels than Mut(ki/ki) mice. Further, Mut(ko/ki) mice exhibit manifestations of kidney and brain damage, including increased plasma urea, impaired diuresis, elevated biomarkers, and changes in brain weight. On a high protein diet, mutant mice display disease exacerbation, including elevated blood ammonia, and catastrophic weight loss, which, in Mut(ki/ki) mice, is rescued by hydroxocobalamin treatment. This study expands knowledge of MMAuria, introduces the discovery of new biomarkers, and constitutes the first in vivo proof of principle of cobalamin treatment in mut-type MMAuria.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos , Dosificación de Gen , Metilmalonil-CoA Mutasa , Fenotipo , Carácter Cuantitativo Heredable , Errores Innatos del Metabolismo de los Aminoácidos/sangre , Errores Innatos del Metabolismo de los Aminoácidos/genética , Errores Innatos del Metabolismo de los Aminoácidos/patología , Amoníaco/metabolismo , Animales , Biomarcadores/sangre , Encéfalo/metabolismo , Encéfalo/patología , Carnitina/análogos & derivados , Carnitina/sangre , Proteínas en la Dieta/efectos adversos , Proteínas en la Dieta/farmacología , Modelos Animales de Enfermedad , Técnicas de Sustitución del Gen , Riñón/metabolismo , Riñón/patología , Ácido Metilmalónico/sangre , Metilmalonil-CoA Mutasa/genética , Metilmalonil-CoA Mutasa/metabolismo , Ratones , Ratones Noqueados
13.
Hum Mol Genet ; 24(20): 5667-76, 2015 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-26199317

RESUMEN

Glycogen branching enzyme 1 (GBE1) plays an essential role in glycogen biosynthesis by generating α-1,6-glucosidic branches from α-1,4-linked glucose chains, to increase solubility of the glycogen polymer. Mutations in the GBE1 gene lead to the heterogeneous early-onset glycogen storage disorder type IV (GSDIV) or the late-onset adult polyglucosan body disease (APBD). To better understand this essential enzyme, we crystallized human GBE1 in the apo form, and in complex with a tetra- or hepta-saccharide. The GBE1 structure reveals a conserved amylase core that houses the active centre for the branching reaction and harbours almost all GSDIV and APBD mutations. A non-catalytic binding cleft, proximal to the site of the common APBD mutation p.Y329S, was found to bind the tetra- and hepta-saccharides and may represent a higher-affinity site employed to anchor the complex glycogen substrate for the branching reaction. Expression of recombinant GBE1-p.Y329S resulted in drastically reduced protein yield and solubility compared with wild type, suggesting this disease allele causes protein misfolding and may be amenable to small molecule stabilization. To explore this, we generated a structural model of GBE1-p.Y329S and designed peptides ab initio to stabilize the mutation. As proof-of-principle, we evaluated treatment of one tetra-peptide, Leu-Thr-Lys-Glu, in APBD patient cells. We demonstrate intracellular transport of this peptide, its binding and stabilization of GBE1-p.Y329S, and 2-fold increased mutant enzymatic activity compared with untreated patient cells. Together, our data provide the rationale and starting point for the screening of small molecule chaperones, which could become novel therapies for this disease.


Asunto(s)
Sistema de la Enzima Desramificadora del Glucógeno/química , Sistema de la Enzima Desramificadora del Glucógeno/genética , Enfermedad del Almacenamiento de Glucógeno Tipo IV/enzimología , Enfermedad del Almacenamiento de Glucógeno/enzimología , Mutación Missense , Enfermedades del Sistema Nervioso/enzimología , Péptidos/uso terapéutico , Secuencia de Aminoácidos , Biología Computacional , Sistema de la Enzima Desramificadora del Glucógeno/efectos de los fármacos , Sistema de la Enzima Desramificadora del Glucógeno/metabolismo , Enfermedad del Almacenamiento de Glucógeno/tratamiento farmacológico , Enfermedad del Almacenamiento de Glucógeno/genética , Enfermedad del Almacenamiento de Glucógeno Tipo IV/genética , Humanos , Datos de Secuencia Molecular , Enfermedades del Sistema Nervioso/tratamiento farmacológico , Enfermedades del Sistema Nervioso/genética , Estructura Terciaria de Proteína , Alineación de Secuencia
14.
Biochim Biophys Acta Mol Basis Dis ; 1863(1): 103-112, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27771510

RESUMEN

An increasing number of studies indicate that each step of the intracellular processing of vitamin B12 or cobalamin (Cbl) involves protein-protein interactions. We have previously described a novel interaction between methionine synthase (MS) and MMACHC and its effect on the regulation of MMACHC activity. Our goal is to further characterize the interactions of MS with other potential partners in a so-called MS interactome. We dissected the interactions and their alterations by co-immunoprecipitation and DuoLink proximity ligation assays in fibroblasts with cblG, cblE, and cblC genetic defects affecting respectively the expression of MS, methionine synthase reductase (MSR) and MMACHC and in HepG2 cells transfected with corresponding siRNAs. We observed the known interactions of MS with MSR and with MMACHC as well as MMADHC with MMACHC, but we also observed novel interactions for MSR with MMACHC and with MMADHC and MS with MMADHC. Furthermore, we show that the absence of MS or MMACHC expression disrupts the interactions between the other interactome members, in cblC and cblG fibroblasts and in HepG2 cells transfected with siRNAs. Our data show that the processing of Cbl in cytoplasm occurs in a multiprotein complex composed of at least MS, MSR, MMACHC and MMADHC, which could contribute to shuttle safely and efficiently Cbl towards MS. Our data suggest that defective protein-protein interactions among key players of this pathway could contribute to the molecular mechanisms of the cblC, cblG and cblE genetic defects and provide novel insights into our understanding of the pathophysiology of inherited disorders of Cbl metabolism.


Asunto(s)
5-Metiltetrahidrofolato-Homocisteína S-Metiltransferasa/metabolismo , Proteínas Portadoras/metabolismo , Ferredoxina-NADP Reductasa/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Mapas de Interacción de Proteínas , Vitamina B 12/metabolismo , Línea Celular , Fibroblastos/metabolismo , Células Hep G2 , Humanos , Péptidos y Proteínas de Señalización Intracelular , Oxidorreductasas , Mapeo de Interacción de Proteínas
15.
J Inherit Metab Dis ; 40(2): 297-306, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27743313

RESUMEN

5,10-Methylenetetrahydrofolate reductase (MTHFR) catalyzes the NADPH-dependent reduction of 5,10-methylenetetrahydrofolate to 5-methyltetrahydrofolate using FAD as the cofactor. Severe MTHFR deficiency is the most common inborn error of folate metabolism, resulting in hyperhomocysteinemia and homocystinuria. Approximately 70 missense mutations have been described that cause severe MTHFR deficiency, however, in most cases their mechanism of dysfunction remains unclear. Few studies have investigated mutational specific defects; most of these assessing only activity levels from a handful of mutations using heterologous expression. Here, we report the in vitro expression of 22 severe MTHFR missense mutations and two known single nucleotide polymorphisms (p.Ala222Val, p.Thr653Met) in human fibroblasts. Significant reduction of MTHFR activity (<20 % of wild-type) was observed for five mutant proteins that also had highly reduced protein levels on Western blot analysis. The remaining mutations produced a spectrum of enzyme activity levels ranging from 22-122 % of wild-type, while the SNPs retained wild-type-like activity levels. We found increased thermolability for p.Ala222Val and seven disease-causing mutations all located in the catalytic domain, three of which also showed FAD responsiveness in vitro. By contrast, six regulatory domain mutations and two mutations clustering around the linker region showed increased thermostability compared to wild-type protein. Finally, we confirmed decreased affinity for NADPH in individual mutant enzymes, a result previously described in primary patient fibroblasts. Our expression study allows determination of significance of missense mutations in causing deleterious loss of MTHFR protein and activity, and is valuable in detection of aberrant kinetic parameters, but should not replace investigations in native material.


Asunto(s)
Homocistinuria/genética , Metilenotetrahidrofolato Reductasa (NADPH2)/deficiencia , Metilenotetrahidrofolato Reductasa (NADPH2)/genética , Espasticidad Muscular/genética , Mutación Missense/genética , Errores Innatos del Metabolismo de los Aminoácidos/genética , Dominio Catalítico/genética , Fibroblastos/metabolismo , Genotipo , Humanos , Hiperhomocisteinemia/genética , Cinética , Proteínas Mutantes/genética , NADP/genética , Polimorfismo de Nucleótido Simple/genética , Trastornos Psicóticos/genética , Tetrahidrofolatos/genética
16.
Hum Mutat ; 37(8): 745-54, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27167370

RESUMEN

Isolated methylmalonic aciduria (MMA) is an autosomal-recessive disorder of propionate metabolism that is most commonly caused by mutations in the methylmalonyl-CoA mutase (MUT) gene (mut-type MMA). We investigated a cohort of 151 patients, classifying 114 patients as mut(0) and 32 as mut(-) (five not defined). As per the definition, mut(-) patients showed a higher propionate incorporation ratio in vitro, which was correlated to a considerably later age of onset compared with mut(0) patients. In all patients, we found a total of 110 different mutations, of which 41 were novel. While the missense alleles p.Asn219Tyr, p.Arg369His, and p.Arg694Trp recurred in >10 alleles, 47 mutations were identified only once, suggesting many patients carry private mutations. Deficient alleles in the mut(-) subclass were almost exclusively caused by missense mutations, found disproportionately in the C-terminal cofactor binding domain. On the contrary, only half of the mut(0) mutations were of the missense type. Western blot analysis revealed reduced MUT protein for all 34 cell lines (27 mut(0) , seven mut(-) ) tested, suggesting protein instability as a major mechanism of deficiency in mut-type MMA. This large-scale evaluation helps to characterize the landscape of MUT mutations and their relationship to dysfunction and disease.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos/genética , Metilmalonil-CoA Mutasa/genética , Metilmalonil-CoA Mutasa/metabolismo , Mutación , Edad de Inicio , Errores Innatos del Metabolismo de los Aminoácidos/metabolismo , Errores Innatos del Metabolismo de los Aminoácidos/patología , Sitios de Unión , Línea Celular , Regulación hacia Abajo , Humanos , Mutación INDEL , Metilmalonil-CoA Mutasa/química , Modelos Moleculares , Mutación Missense , Estabilidad Proteica
17.
Hum Mutat ; 37(5): 427-38, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26872964

RESUMEN

Severe 5,10-methylenetetrahydrofolate reductase (MTHFR) deficiency is caused by mutations in the MTHFR gene and results in hyperhomocysteinemia and varying severity of disease, ranging from neonatal lethal to adult onset. Including those described here, 109 MTHFR mutations have been reported in 171 families, consisting of 70 missense mutations, 17 that primarily affect splicing, 11 nonsense mutations, seven small deletions, two no-stop mutations, one small duplication, and one large duplication. Only 36% of mutations recur in unrelated families, indicating that most are "private." The most common mutation is c.1530A>G (numbered from NM_005957.4, p.Lys510 = ) causing a splicing defect, found in 13 families; the most common missense mutation is c.1129C>T (p.Arg377Cys) identified in 10 families. To increase disease understanding, we report enzymatic activity, detected mutations, and clinical onset information (early, <1 year; or late, >1 year) for all published patients available, demonstrating that patients with early onset have less residual enzyme activity than those presenting later. We also review animal models, diagnostic approaches, clinical presentations, and treatment options. This is the first large review of mutations in MTHFR, highlighting the wide spectrum of disease-causing mutations.


Asunto(s)
Homocistinuria/genética , Metilenotetrahidrofolato Reductasa (NADPH2)/deficiencia , Espasticidad Muscular/genética , Mutación , Edad de Inicio , Animales , Dominio Catalítico , Bases de Datos Genéticas , Modelos Animales de Enfermedad , Humanos , Recién Nacido , Metilenotetrahidrofolato Reductasa (NADPH2)/química , Metilenotetrahidrofolato Reductasa (NADPH2)/genética , Metilenotetrahidrofolato Reductasa (NADPH2)/metabolismo , Tamizaje Neonatal , Trastornos Psicóticos/genética
18.
J Biol Chem ; 290(49): 29167-77, 2015 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-26483544

RESUMEN

Conversion of vitamin B12 (cobalamin, Cbl) into the cofactor forms methyl-Cbl (MeCbl) and adenosyl-Cbl (AdoCbl) is required for the function of two crucial enzymes, mitochondrial methylmalonyl-CoA mutase and cytosolic methionine synthase, respectively. The intracellular proteins MMACHC and MMADHC play important roles in processing and targeting the Cbl cofactor to its destination enzymes, and recent evidence suggests that they may interact while performing these essential trafficking functions. To better understand the molecular basis of this interaction, we have mapped the crucial protein regions required, indicate that Cbl is likely processed by MMACHC prior to interaction with MMADHC, and identify patient mutations on both proteins that interfere with complex formation, via different mechanisms. We further report the crystal structure of the MMADHC C-terminal region at 2.2 Å resolution, revealing a modified nitroreductase fold with surprising homology to MMACHC despite their poor sequence conservation. Because MMADHC demonstrates no known enzymatic activity, we propose it as the first protein known to repurpose the nitroreductase fold solely for protein-protein interaction. Using small angle x-ray scattering, we reveal the MMACHC-MMADHC complex as a 1:1 heterodimer and provide a structural model of this interaction, where the interaction region overlaps with the MMACHC-Cbl binding site. Together, our findings provide novel structural evidence and mechanistic insight into an essential biological process, whereby an intracellular "trafficking chaperone" highly specific for a trace element cofactor functions via protein-protein interaction, which is disrupted by inherited disease mutations.


Asunto(s)
Proteínas Portadoras/química , Proteínas de Transporte de Membrana Mitocondrial/química , Vitamina B 12/química , Secuencia de Aminoácidos , Animales , Sitios de Unión , Proteínas Portadoras/genética , Cristalografía por Rayos X , Humanos , Péptidos y Proteínas de Señalización Intracelular , Enfermedades Metabólicas/metabolismo , Ratones , Proteínas de Transporte de Membrana Mitocondrial/genética , Chaperonas Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Mutación , Nitrorreductasas/química , Oxidorreductasas , Fenotipo , Unión Proteica , Mapeo de Interacción de Proteínas , Multimerización de Proteína , Estructura Secundaria de Proteína , Transporte de Proteínas , Proteínas Recombinantes/química , Homología de Secuencia de Aminoácido
19.
J Inherit Metab Dis ; 39(1): 115-24, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26025547

RESUMEN

BACKGROUND: Severe methylenetetrahydrofolate reductase (MTHFR) deficiency is a rare inborn defect disturbing the remethylation of homocysteine to methionine (<200 reported cases). This retrospective study evaluates clinical, biochemical genetic and in vitro enzymatic data in a cohort of 33 patients. METHODS: Clinical, biochemical and treatment data was obtained from physicians by using a questionnaire. MTHFR activity was measured in primary fibroblasts; genomic DNA was extracted from cultured fibroblasts. RESULTS: Thirty-three patients (mean age at follow-up 11.4 years; four deceased; median age at first presentation 5 weeks; 17 females) were included. Patients with very low (<1.5%) mean control values of enzyme activity (n = 14) presented earlier and with a pattern of feeding problems, encephalopathy, muscular hypotonia, neurocognitive impairment, apnoea, hydrocephalus, microcephaly and epilepsy. Patients with higher (>1.7-34.8%) residual enzyme activity had mainly psychiatric symptoms, mental retardation, myelopathy, ataxia and spasticity. Treatment with various combinations of betaine, methionine, folate and cobalamin improved the biochemical and clinical phenotype. During the disease course, patients with very low enzyme activity showed a progression of feeding problems, neurological symptoms, mental retardation, and psychiatric disease while in patients with higher residual enzyme activity, myelopathy, ataxia and spasticity increased. All other symptoms remained stable or improved in both groups upon treatment as did brain imaging in some cases. No clear genotype-phenotype correlation was obvious. DISCUSSION: MTHFR deficiency is a severe disease primarily affecting the central nervous system. Age at presentation and clinical pattern are correlated with residual enzyme activity. Treatment alleviates biochemical abnormalities and clinical symptoms partially.


Asunto(s)
Homocistinuria/enzimología , Homocistinuria/genética , Metilenotetrahidrofolato Reductasa (NADPH2)/deficiencia , Metilenotetrahidrofolato Reductasa (NADPH2)/genética , Espasticidad Muscular/enzimología , Espasticidad Muscular/genética , Ataxia/genética , Betaína/uso terapéutico , Niño , Femenino , Ácido Fólico/uso terapéutico , Estudios de Asociación Genética/métodos , Homocistinuria/tratamiento farmacológico , Humanos , Discapacidad Intelectual/genética , Masculino , Metionina/uso terapéutico , Espasticidad Muscular/tratamiento farmacológico , Mutación/genética , Fenotipo , Trastornos Psicóticos/tratamiento farmacológico , Trastornos Psicóticos/enzimología , Trastornos Psicóticos/genética , Estudios Retrospectivos , Enfermedades de la Médula Espinal/genética , Vitamina B 12/uso terapéutico
20.
Hum Mutat ; 36(6): 611-21, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25736335

RESUMEN

5,10-Methylenetetrahydrofolate reductase (MTHFR) deficiency is the most common inherited disorder of folate metabolism and causes severe hyperhomocysteinaemia. To better understand the relationship between mutation and function, we performed molecular genetic analysis of 76 MTHFR deficient patients, followed by extensive enzymatic characterization of fibroblasts from 72 of these. A deleterious mutation was detected on each of the 152 patient alleles, with one allele harboring two mutations. Sixty five different mutations (42 novel) were detected, including a common splicing mutation (c.1542G>A) found in 21 alleles. Using an enzyme assay in the physiological direction, we found residual activity (1.7%-42% of control) in 42 cell lines, of which 28 showed reduced affinity for nicotinamide adenine dinucleotide phosphate (NADPH), one reduced affinity for methylenetetrahydrofolate, five flavin adenine dinucleotide-responsiveness, and 24 abnormal kinetics of S-adenosylmethionine inhibition. Missense mutations causing virtually absent activity were found exclusively in the N-terminal catalytic domain, whereas missense mutations in the C-terminal regulatory domain caused decreased NADPH binding and disturbed inhibition by S-adenosylmethionine. Characterization of patients in this way provides a basis for improved diagnosis using expanded enzymatic criteria, increases understanding of the molecular basis of MTHFR dysfunction, and points to the possible role of cofactor or substrate in the treatment of patients with specific mutations.


Asunto(s)
Estudios de Asociación Genética , Homocistinuria/diagnóstico , Homocistinuria/genética , Metilenotetrahidrofolato Reductasa (NADPH2)/deficiencia , Espasticidad Muscular/diagnóstico , Espasticidad Muscular/genética , Alelos , Empalme Alternativo , Activación Enzimática , Exones , Fibroblastos/metabolismo , Homocistinuria/metabolismo , Humanos , Intrones , Cinética , Metilenotetrahidrofolato Reductasa (NADPH2)/genética , Metilenotetrahidrofolato Reductasa (NADPH2)/metabolismo , Espasticidad Muscular/metabolismo , Mutación , Polimorfismo de Nucleótido Simple , Estabilidad Proteica , Trastornos Psicóticos/diagnóstico , Trastornos Psicóticos/genética , Trastornos Psicóticos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA