Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell Biol ; 22(24): 8562-70, 2002 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-12446775

RESUMEN

Expression of the human cytomegalovirus UL4 gene is inhibited by translation of a 22-codon-upstream open reading frame (uORF2). The peptide product of uORF2 acts in a sequence-dependent manner to inhibit its own translation termination, resulting in persistence of the uORF2 peptidyl-tRNA linkage. Consequently, ribosomes stall at the uORF2 termination codon and obstruct downstream translation. Since termination appears to be the critical step affected by translation of uORF2, we examined the role of eukaryotic release factors 1 and 3 (eRF1 and eRF3) in the inhibitory mechanism. In support of the hypothesis that an interaction between eRF1 and uORF2 contributes to uORF2 inhibitory activity, specific residues in each protein, glycines 183 and 184 of the eRF1 GGQ motif and prolines 21 and 22 of the uORF2 peptide, were found to be necessary for full inhibition of downstream translation. Immunoblot analyses revealed that eRF1, but not eRF3, accumulated in the uORF2-stalled ribosome complex. Finally, increased puromycin sensitivity was observed after depletion of eRF1 from the stalled ribosome complex, consistent with inhibition of peptidyl-tRNA hydrolysis resulting from an eRF1-uORF2 peptidyl-tRNA interaction. These results reveal the paradoxical potential for interactions between a nascent peptide and eRF1 to obstruct the translation termination cascade.


Asunto(s)
Sistemas de Lectura Abierta , Factores de Terminación de Péptidos/metabolismo , Biosíntesis de Proteínas , Aminoacil-ARN de Transferencia/metabolismo , Ribosomas/metabolismo , Secuencia de Aminoácidos , Sistema Libre de Células , Citomegalovirus/genética , Citomegalovirus/metabolismo , Humanos , Sustancias Macromoleculares , Inhibidores de la Síntesis de la Proteína/metabolismo , Puromicina/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo
2.
FEBS Lett ; 583(21): 3455-60, 2009 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-19796638

RESUMEN

Although some data link archaeal and eukaryotic translation, the overall mechanism of protein synthesis in archaea remains largely obscure. Both archaeal (aRF1) and eukaryotic (eRF1) single release factors recognize all three stop codons. The archaeal genus Methanosarcinaceae contains two aRF1 homologs, and also uses the UAG stop to encode the 22nd amino acid, pyrrolysine. Here we provide an analysis of the last stage of archaeal translation in pyrrolysine-utilizing species. We demonstrated that only one of two Methanosarcina barkeri aRF1 homologs possesses activity and recognizes all three stop codons. The second aRF1 homolog may have another unknown function. The mechanism of pyrrolysine incorporation in the Methanosarcinaceae is discussed.


Asunto(s)
Lisina/análogos & derivados , Methanosarcinaceae/genética , Methanosarcinaceae/metabolismo , Biosíntesis de Proteínas , Secuencia de Aminoácidos , Proteínas Arqueales/química , Proteínas Arqueales/metabolismo , Codón de Terminación/genética , Codón de Terminación/metabolismo , Genoma Arqueal , Humanos , Lisina/metabolismo , Datos de Secuencia Molecular , Factores de Terminación de Péptidos/química , Factores de Terminación de Péptidos/metabolismo , Filogenia
3.
Cell ; 125(6): 1125-36, 2006 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-16777602

RESUMEN

Eukaryotic translation termination is triggered by peptide release factors eRF1 and eRF3. Whereas eRF1 recognizes all three termination codons and induces hydrolysis of peptidyl tRNA, eRF3's function remains obscure. Here, we reconstituted all steps of eukaryotic translation in vitro using purified ribosomal subunits; initiation, elongation, and termination factors; and aminoacyl tRNAs. This allowed us to investigate termination using pretermination complexes assembled on mRNA encoding a tetrapeptide and to propose a model for translation termination that accounts for the cooperative action of eRF1 and eRF3 in ensuring fast release of nascent polypeptide. In this model, binding of eRF1, eRF3, and GTP to pretermination complexes first induces a structural rearrangement that is manifested as a 2 nucleotide forward shift of the toeprint attributed to pretermination complexes that leads to GTP hydrolysis followed by rapid hydrolysis of peptidyl tRNA. Cooperativity between eRF1 and eRF3 required the eRF3 binding C-terminal domain of eRF1.


Asunto(s)
Factores de Terminación de Péptidos/química , Biosíntesis de Proteínas , Animales , Codón de Terminación , Guanosina Trifosfato/fisiología , Hidrólisis , Modelos Biológicos , Terminación de la Cadena Péptídica Traduccional , Factores de Terminación de Péptidos/fisiología , Unión Proteica , Subunidades de Proteína/química , Aminoacil-ARN de Transferencia/química , Aminoacil-ARN de Transferencia/fisiología , Conejos , Ribosomas/química , Ribosomas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA