Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Inorg Chem ; 62(22): 8615-8625, 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37218057

RESUMEN

Uranium-based catalysts have been regarded as promising candidates for N2 fixation owing to the low-valent uranium metal active sites possessing the ability to enhance the electron back-donating to the π* antibonding orbitals of N2 for N≡N dissociation. Herein, we report a directional half-wave rectified alternating current electrochemical method to confine oxygen-rich uranium precursors over ultrathin 2D GO nanosheets. The as-prepared uranium catalysts exhibit a considerable Faradaic efficiency of 12.7% for NH3 and the NH3 yield rate of 18.7 µg h-1 mg-1 for N2 electroreduction. Operando XAS and isotope-labeling FTIR further unravel the preferred nitrogen adsorption reaction intermediate N-(2Oax-1 U-4Oeq) and confirm the key *N2Hy intermediate species derived from the fed N2 gas. Theoretical simulations demonstrate that the U-O atomic interface originated from U 5f-O 2p orbital hybridization can accumulate partial charge from GO, which can facilitate the N≡N dissociation and lower the thermodynamic energy barrier of the first hydrogenation step.

2.
Adv Sci (Weinh) ; 11(5): e2305439, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38050661

RESUMEN

Photo-assisted uranium reduction from uranium mine wastewater is expected to overcome the competition between impurity ions and U(VI) in the traditional process. Here, B-TiO2 @Co2 P-X S-scheme heterojunction with metal-oxygen-hydrogen (M-O-H) is developed insitu modification for photo-assisted U(VI) (hexavalent uranium) reduction. Relying on the DFT calculation and Hard-Soft-Acid-Base (HSAB) theory, the introduction of metal-oxygen-hydrogen (M-O-H, hard base) metallic bonds in the B-TiO2 @Co2 P-X is found to enhance the hydrophilicity and the capture capability for uranyl ion (hard acid). Accordingly, B-TiO2 @Co2 P-500 hybrid nanosheets exhibit excellent U(VI) reduction ability (>98%) in the presence of competing ions. By self-consistent energy band calculations and in-situ KPFM spectral analysis, the formation of the internal electric field between B-TiO2 and Co2 P at the heterojunction is proven, offering a strong driving force and atomic transportation highway for accelerating the S-scheme charge carriers directed migration and promoting the photocatalytic reduction of uranium. This work provides a valuable route to explore the functionally modified photocatalyst with high-efficiency photoelectron separation for U(VI) reduction.

3.
J Hazard Mater ; 460: 132356, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37633015

RESUMEN

The development of inexpensive and efficient semiconductor catalysts for photo-assisted uranium extraction from seawater remains a huge challenge. Herein, we have successfully synthesized amidoxime-rich g-C3N4 (AO-C3N4) by simply amidoximing a cyano-rich precursor for photo-assisted uranium extraction from seawater. The amidoxime groups not only served as the U(VI) binding sites for efficient uranium adsorption, but also significantly improved the visible light absorption capacity and carrier separation efficiency via introducing defect energy level, resulting in the excellent photocatalytic activity for AO-C3N4 towards photo-assisted uranium extraction. In the process of photo-assisted uranium extraction, U(VI) was first adsorbed by the amidoxime groups on the AO-C3N4 and then reduced to U(IV), while (UO2)O2·2H2O and (UO2)O2·4H2O were further formed by the oxidation of U(IV) by superoxide radicals (·O2-). Moreover, the generated reactive oxygen species (ROS) under light endowed AO-C3N4 with outstanding antibacterial properties, preventing the limitation of uranium extraction capacity from marine biofouling.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA