Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
BMC Vet Res ; 20(1): 252, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38851737

RESUMEN

BACKGROUND: The insulin/insulin-like signalling (IIS) pathway is common in mammals and invertebrates, and the IIS pathway is unknown in Fasciola gigantica. In the present study, the IIS pathway was reconstructed in F. gigantica. We defined the components involved in the IIS pathway and investigated the transcription profiles of these genes for all developmental stages of F. gigantica. In addition, the presence of these components in excretory and secretory products (ESPs) was predicted via signal peptide annotation. RESULTS: The core components of the IIS pathway were detected in F. gigantica. Among these proteins, one ligand (FgILP) and one insulin-like molecule binding protein (FgIGFBP) were analysed. Interestingly, three receptors (FgIR-1/FgIR-2/FgIR-3) were detected, and a novel receptor, FgIR-3, was screened, suggesting novel functions. Fg14-3-3ζ, Fgirs, and Fgpp2a exhibited increased transcription in 42-day-old juveniles and 70-day-old juveniles, while Fgilp, Fgigfb, Fgsgk-1, Fgakt-1, Fgir-3, Fgpten, and Fgaap-1 exhibited increased transcription in metacercariae. FgILP, FgIGFBP, FgIR-2, FgIR-3, and two transcription factors (FgHSF-1 and FgSKN-1) were predicted to be present in FgESPs, indicating their exogenous roles. CONCLUSIONS: This study helps to elucidate the signal transduction pathway of IIS in F. gigantica, which will aid in understanding the interaction between flukes and hosts, as well as in understanding fluke developmental regulation, and will also lay a foundation for further characterisation of the IIS pathways of trematodes.


Asunto(s)
Fasciola , Proteínas del Helminto , Insulina , Transducción de Señal , Animales , Fasciola/genética , Fasciola/metabolismo , Insulina/metabolismo , Proteínas del Helminto/metabolismo , Proteínas del Helminto/genética
2.
Acta Trop ; 260: 107391, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39278520

RESUMEN

Buffaloes cannot mount a robust adaptive immune response to secondary infection by Fasciola gigantica. Even if excretory and secretory products (ESPs) exhibit potent immunoregulatory effects during primary infection, research on ESPs in secondary infection is lacking, even though the ESP components that are excreted/secreted during secondary infection are unknown. Therefore, qualitative analysis of ESP during secondary infection was performed and compared with that of primary infection to deepen the recognition of secondary infection and facilitate immunoregulatory molecules screening. Buffaloes were divided into three groups: A (n = 3, noninfected), B (n = 3, primary infection) and C (n = 3, secondary infection). Buffaloes in the primary (0 weeks post infection; wpi) and secondary (-4 and 0 wpi) infection groups were infected with 250 metacercariae by oral administration. Then, sera were collected from groups at different wpi, and interacting proteins were precipitated by coimmunoprecipitation (Co-IP), qualitatively analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS), and annotated by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses to infer their potential functions. In group C, 324 proteins were identified, of which 76 proteins were consistently identified across 7 time points (1, 3, 6, 8, 10, 13, and 16 wpi). Compared with 87 proteins consistently identified in group B, 22 proteins were identified in group C. Meanwhile, 34 proteins were only identified in group C compared to 200 proteins identified in group B. Protein pathway analysis indicated that these proteins were mainly involved in the cellular processes and metabolism of F. gigantica. Among them, 14-3-3θ was consistently identified in group C and may be involved in various cellular processes and innate immune signalling pathways. Members of the HSP family were identified in both groups B and C and may function in both primary and secondary infection processes. The proteins discovered in the present study will help to deepen the understanding of the molecular interactions between F. gigantica and buffalo during secondary infection and facilitate the identification of new potential immunoregulatory molecules.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA