Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Molecules ; 24(10)2019 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-31100775

RESUMEN

We present two as-synthesized Fe(II)-based molecular catalysts with 1,10-phenanthroline (phen) ligands; Fe(phen)3Cl2 (1) and [Fe(phen)2(CH3CH2OH)Cl]Cl (2), and their robust catalytic properties for the conversion of CO2 to CO in DMF/TEOA (DMF = N,N'-dimethylformamide; TEOA = triethanolamine) solution containing Ru(bpy)32+ and BIH (1,3-dimethyl-2-phenyl-2,3- dihydro-1H-benzo-[d]-imidazole). High turnover numbers (TONs) of 19,376 were achieved with turnover frequencies (TOFs) of 3.07 s-1 for complex 1 (1.5 × 10-7 M). A quantum efficiency of 0.38% was observed after 5 h irradiated by 450 nm monochromatic light. The generation rate of CO2 and H2 were tuned by optimizing the experimental conditions, resulting in a high CO selectivity of 90%. The remarkable contribution of the photosensitizer to the total TONCO was found being 19.2% (as shown by tests under similar conditions without catalysts) when BIH was employed as a sacrificial electron donor. The product selectivity in complex 2 reached 95%, and the corresponding TONCO and TOFCO were 33,167 and 4.61 s-1 in the same concentration with complex 1 used as catalyst; respectively. This work provides guidance for future designs of simple, highly efficient and selective molecular catalytic systems that facilitate carbon-neutral solar-to-fuel conversion processes.


Asunto(s)
Dióxido de Carbono/metabolismo , Monóxido de Carbono/metabolismo , Hierro/metabolismo , Luz , Catálisis/efectos de la radiación , Hidrógeno/metabolismo , Marcaje Isotópico , Redes y Vías Metabólicas , Procesos Fotoquímicos , Factores de Tiempo
2.
Chemistry ; 24(34): 8596-8602, 2018 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-29718568

RESUMEN

Artificial photosynthesis has attracted wide attention, particularly the development of efficient solar light-driven methods to reduce CO2 to form energy-rich carbon-based products. Because CO2 reduction is an uphill process with a large energy barrier, suitable catalysts are necessary to achieve this transformation. In addition, CO2 adsorption on a catalyst and proton transfer to CO2 are two important factors for the conversion reaction, and catalysts with high surface area and more active sites are required to improve the efficiency of CO2 reduction. Here, a visible light-driven system for CO2 -to-CO conversion is reported, which consists of a heterogeneous hybrid catalyst of Co and Co2 P nanoparticles embedded in carbon nanolayers codoped with N and P (Co-Co2 P@NPC) and a homogeneous RuII -based complex photosensitizer. The average generation rate of CO of the system was up to 35 000 µmol h-1 g-1 with selectivity of 79.1 % in 3 h. Linear CO production at an exceptionally high rate of 63 000 µmol h-1 g-1 was observed in the first hour of reaction. Inspired by this highly active catalyst, Co@NC and Co2 P@NPC materials were also synthesized and their structure, morphology, and catalytic properties for CO2 photoreduction were explored. The results showed that the nanoparticle size, partially adsorbed H2 O molecules on the catalyst surface, and the hybrid nature of the systems influenced their photocatalytic CO2 reduction performance.

3.
Chemistry ; 24(17): 4273-4278, 2018 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-29437258

RESUMEN

Visible-light-driven conversion of CO2 to CO and high-value-added carbon products is a promising strategy for mitigating CO2 emissions and reserving solar energy in chemical form. We report an efficient system for CO2 transformation to CO catalyzed by bare CoP, hybrid CoP/carbon nanotubes (CNTs), and CoP/reduced graphene oxide (rGO) in mixed aqueous solutions containing a Ru-based photosensitizer, under visible-light irradiation. The in situ prepared hybrid catalysts CoP/CNT and CoP/rGO show excellent catalytic activities in CO2 reduction to CO, with a catalytic rates of up to 39 510 and 47 330 µmol h-1 g-1 in the first 2 h of reaction, respectively; a high CO selectivity of 73.1 % for the former was achieved in parallel competing reactions in the photoreduction of CO2 and H2 O. A combination of experimental and computational studies clearly shows that strong interactions between CoP and carbon-supported materials and partially adsorbed H2 O molecules on the catalyst surface significantly improve CO-generating rates.

4.
Proc Natl Acad Sci U S A ; 112(30): E3987-96, 2015 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-26116625

RESUMEN

New dyads consisting of a strongly absorbing Bodipy (dipyrromethene-BF2) dye and a platinum diimine dithiolate (PtN2S2) charge transfer (CT) chromophore have been synthesized and studied in the context of the light-driven generation of H2 from aqueous protons. In these dyads, the Bodipy dye is bonded directly to the benzenedithiolate ligand of the PtN2S2 CT chromophore. Each of the new dyads contains either a bipyridine (bpy) or phenanthroline (phen) diimine with an attached functional group that is used for binding directly to TiO2 nanoparticles, allowing rapid electron photoinjection into the semiconductor. The absorption spectra and cyclic voltammograms of the dyads show that the spectroscopic and electrochemical properties of the dyads are the sum of the individual chromophores (Bodipy and the PtN2S2 moieties), indicating little electronic coupling between them. Connection to TiO2 nanoparticles is carried out by sonication leading to in situ attachment to TiO2 without prior hydrolysis of the ester linking groups to acids. For H2 generation studies, the TiO2 particles are platinized (Pt-TiO2) so that the light absorber (the dyad), the electron conduit (TiO2), and the catalyst (attached colloidal Pt) are fully integrated. It is found that upon 530 nm irradiation in a H2O solution (pH 4) with ascorbic acid as an electron donor, the dyad linked to Pt-TiO2 via a phosphonate or carboxylate attachment shows excellent light-driven H2 production with substantial longevity, in which one particular dyad [4(bpyP)] exhibits the highest activity, generating ∼ 40,000 turnover numbers of H2 over 12 d (with respect to dye).

5.
Angew Chem Int Ed Engl ; 57(21): 6279-6283, 2018 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-29655269

RESUMEN

A total of 35 [Au(NHC)2 ][MX2 ] (NHC=N-heterocyclic carbene; M=Au or Cu; X=halide, cyanide or arylacetylide) complex salts were synthesized by co-precipitation of [Au(NHC)2 ]+ cations and [MX2 ]- anions. These salts contain crystallographically determined polymeric Au⋅⋅⋅Au or Au⋅⋅⋅Cu interactions and are highly phosphorescent with quantum yields up to unity and emission color tunable in the entire visible regions. The nature of the emissive excited states is generally assigned to ligand (anion)-to-ligand (cation) charge-transfer transitions assisted by d10 ⋅⋅⋅d10 metallophilicity. The emission properties can be further tuned by controlled triple-component co-crystallization or by epitaxial growth. Correct recipes for white light-emitting phosphors with quantum yields higher than 70 % have been achieved by screening the combinatorial pool.

6.
Chemistry ; 21(3): 1184-90, 2015 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-25413572

RESUMEN

Four heteroleptic copper(I) complexes containing phenanthroline and monoanionic nido-carborane-diphosphine ligands have been prepared and structurally characterized by various spectroscopic techniques and X-ray diffraction. These complexes exhibit intense absorptions in the visible range and excited-state lifetimes on the microsecond scale. Their application in visible-light-induced cross-dehydrogenative coupling reactions was investigated. Preliminary studies showed that one of the four copper(I) complexes is an efficient catalyst for photoinduced oxidative C-H functionalization using oxygen as oxidant. Furthermore, α-functionalized tertiary amines were obtained in good-to-excellent yields by light irradiation (λ>420 nm) of a mixture of our Cu(I) complex, tertiary amines, and a variety of nucleophiles (nitroalkane, acetone, or indoles) under aerobic conditions. Electron paramagnetic resonance measurements provided evidence for the formation of superoxide radical anions (O2(-⋅)) rather than singlet oxygen ((1)O2) during these photocatalytic reactions.

7.
Inorg Chem ; 54(6): 3061-7, 2015 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-25714621

RESUMEN

Although many noble-metal oxide catalysts show high activities and low overpotentials for water oxidation, there remain challenges in the sustainable developments of more inexpensive, efficient, and robust catalysts. Here, we report a heterogeneous copper oxide film toward water oxidation formed upon the oxidative polarization of an acetate electrolyte containing Earth-abundant Cu(II) salts in combination with commercially available triethanolamine (TEOA) as the catalyst precursor. A 1:1 molar ratio of TEOA coordinates to Cu(II) is favored in aqueous solution and the single crystal of the complex was obtained. The film has a modest overpotential of 550 mV and the catalytic performance of the material is demonstrated by long-term electrolysis at 1.3 V vs normal hydrogen electrode, a stable current density persists for at least 3 h, and a Faradaic efficiency of almost 100% is obtained.

8.
Inorg Chem ; 54(1): 183-91, 2015 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-25526316

RESUMEN

Electronic coupling across a bridging ligand between a chromophore and a catalyst center has an important influence on biological and synthetic photocatalytic processes. Structural and associated electronic modifications of ligands may improve the efficiency of photocatalytic transformations of organic substrates. Two ruthenium-based supramolecular assemblies based on a chromophore-catalyst dyad containing a Ru-aqua complex and its chloro form as the catalytic components were synthesized and structurally characterized, and their spectroscopic and electrochemical properties were investigated. Under visible light irradiation and in the presence of [Co(NH3)5Cl]Cl2 as a sacrificial electron acceptor, both complexes exhibited good photocatalytic activity toward oxidation of sulfide into the corresponding sulfoxide with high efficiency and >99% product selectivity in neutral aqueous solution. The Ru-aqua complex assembly was more efficient than the chloro complex. Isotopic labeling experiments using (18)O-labeled water demonstrated the oxygen atom transfer from the water to the organic substrate, likely through the formation of an active intermediate, Ru(IV)═O.

9.
Angew Chem Int Ed Engl ; 54(52): 15725-9, 2015 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-26545954

RESUMEN

Ammonia-borane (AB) is a promising chemical hydrogen-storage material. However, the development of real-time, efficient, controllable, and safe methods for hydrogen release under mild conditions is a challenge in the large-scale use of hydrogen as a long-term solution for future energy security. A new class of low-cost catalytic system is presented that uses nanostructured Ni2 P as catalyst, which exhibits excellent catalytic activity and high sustainability toward hydrolysis of ammonia-borane with the initial turnover frequency of 40.4 mol(H2) mol(Ni2P) (-1) min(-1) under air atmosphere and at ambient temperature. This value is higher than those reported for noble-metal-free catalysts, and the obtained Arrhenius activation energy (Ea =44.6 kJ mol(-1) ) for the hydrolysis reaction is comparable to Ru-based bimetallic catalysts. A clearly mechanistic analysis of the hydrolytic reaction of AB based on experimental results and a density functional theory calculation is presented.

10.
Chemistry ; 20(26): 8054-61, 2014 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-24888489

RESUMEN

Four new charge-neutral ruthenium(II) complexes containing dianionic Schiff base and isoquinoline or 4-picoline ligands were synthesized and characterized by NMR and ESI-MS spectroscopies, elemental analysis, and X-ray diffraction. The complexes exhibited excellent chemical water oxidation activity and high stability under acidic conditions (pH 1.0) using (NH4)2Ce(NO3)6 as a sacrificial electron acceptor. The high catalytic activities of these complexes for water oxidation were sustained for more than 10 h at low concentrations. High turnover numbers of up to 3200 were achieved. A water nucleophilic attack mechanism was proposed. A Ru(V)=O intermediate was detected during the catalytic cycle by high-resolution mass spectrometry.

11.
Chemistry ; 20(43): 13957-64, 2014 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-25205065

RESUMEN

Two mononuclear ruthenium complexes [Ru(H2tcbp)(isoq)2] (1) and [Ru(H2tcbp)(pic)2] (2) (H4tcbp=4,4',6,6'-tetracarboxy-2,2'-bipyridine, isoq=isoquinoline, pic=4-picoline) are synthesized and fully characterized. Two spare carboxyl groups on the 4,4'-positions are introduced to enhance the solubility of 1 and 2 in water and to simultaneously allow them to tether to the electrode surface by an ester linkage. The photochemical, electrochemical, and photoelectrochemical water oxidation performance of 1 in neutral aqueous solution is investigated. Under electrochemical conditions, water oxidation is conducted on the deposited indium-tin-oxide anode, and a turnover number higher than 15,000 per water oxidation catalyst (WOC) 1 is obtained during 10 h of electrolysis under 1.42 V vs. NHE, corresponding to a turnover frequency of 0.41 s(-1). The low overpotential (0.17 V) of electrochemical water oxidation for 1 in the homogeneous solution enables water oxidation under visible light by using [Ru(bpy)3](2+) (P1) (bpy=2,2'-bipyridine) or [Ru(bpy)2(4,4'-(COOEt)2-bpy)](2+) (P2) as a photosensitizer. In a three-component system containing 1 or 2 as a light-driven WOC, P1 or P2 as a photosensitizer, and Na2S2O8 or [CoCl(NH3)5]Cl2 as a sacrificial electron acceptor, a high turnover frequency of 0.81 s(-1) and a turnover number of up to 600 for 1 under different catalytic conditions are achieved. In a photoelectrochemical system, the WOC 1 and photosensitizer are immobilized together on the photoanode. The electrons efficiently transfer from the WOC to the photogenerated oxidizing photosensitizer, and a high photocurrent density of 85 µA cm(-2) is obtained by applying 0.3 V bias vs. NHE.

12.
J Phys Chem A ; 118(45): 10663-72, 2014 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-25189412

RESUMEN

The effects of solvent and substituents on a multichromophoric complex containing a boron-dipyrromethene (Bodipy) chromophore and Pt(bpy)(bdt) (bpy = 2,2'-bipyridine, bdt =1,2-benzenedithiolate) were studied using steady-state absorption, emission, and ultrafast transient absorption spectroscopy. When the Bodipy molecule is connected to either the bpy or bdt in acetonitrile, excitation ultimately leads to the dyad undergoing triplet energy transfer (TEnT) from the redox-active Pt triplet mixed-metal-ligand-to-ligand' charge transfer ((3)MMLL'CT) state to the Bodipy (3)ππ* state in 8 and 160 ps, respectively. This is disadvantageous for solar energy applications. Here, we investigate two methods to lower the energy of the (3)MMLL'CT state, thereby making TEnT unfavorable. By switching to a low dielectric constant solvent, we are able to extend the lifetime of the (3)MMLL'CT state to over 1 ns, the time frame of our experiment. Additionally, electron-withdrawing groups, such as carboxylate and phosphonate esters, on the bpy lower the energy of the (3)MMLL'CT state such that the photoexcited dyad remains in that state and avoids TEnT to the Bodipy (3)ππ* state. It is also shown that a single methylene spacer between the bpy and phosphonate ester is sufficient to eliminate this effect, raising the energy of the (3)MMLL'CT state and inducing relaxation to the (3)ππ*.

13.
Chemistry ; 18(46): 14599-604, 2012 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-23032933

RESUMEN

Luminous boron: new 1,8-naphthyridine-BF(2) complexes with strong emissions both in solution and in the solid state have been developed. Aggregation-induced blueshifts of emissions in DMSO/water mixtures and solvent-influenced luminescence in crystalline states have been observed and are discussed.

14.
Inorg Chem ; 49(10): 4524-33, 2010 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-20408579

RESUMEN

A series of 1,8-naphthyridine derivatives containing vinyl, 2-(2-acetylamino-pyridine-6-ethylene)-4-methyl-7-acetylamino-1,8-naphthyridine (L(1)), 2-(2-acetylamino-pyridine-6-ethylene)-1,8-naphthyridine (L(2)), 2-(2-acetylamino-pyridinyl-6-ethylene)-4-methyl-7-hydroxyl-1,8-naphthyridine (L(3)), 2-(2-diacetylamino-pyridinyl-3-ethylene)-7-diacetylamino-1,8-naphthyridine (L(4)), and 7-(2-diacetylamino-pyridinyl-3-ethylene)-4'-acetyl-pyrrolo[1',5'-a]-1,8-naphthyridine (L(5)), as well as complexes [CuL(1)(PCy(3))](BF(4))(2) (1) (PCy(3) = tricyclohexylphosphine), [Cu(2)L(1)(PPh(3))(4)](BF(4))(2) (2) (PPh(3) = triphenylphosphine), [Cu(2)L(1)(dppm)](BF(4))(2) (3) (dppm = bis(diphenylphosphino)methane), and [Cu(2)(L(1))(dcpm)][BF(4)](2) (4) (dcpm = bis(dicyclohexylphosphino)methane, were synthesized. All these compounds, except for L(1) and L(2), were characterized by single crystal X-ray diffraction analysis, and a comprehensive study of their spectroscopic properties involving experimental theoretical studies is presented. We found an intramolecular 1,3-hydrogen transfer during the formation of L(3) and L(4), which in the case of the latter plays an important role in the 1,5-dipolar cyclization of L(5). The spectral changes that originate from an intramolecular charge transfer (ICT) in the form of a pi(py)-->pi*(napy) transition can be tuned through acid/base-controlled switching for L(1)-L(3). A photoinduced isomerization for L(1)-L(3), 1, and 2 having flexible structures was observed under 365 nm light irradiation. Quantum chemical calculations revealed that the dinuclear complexes with structural asymmetry exhibit different metal-to-ligand charge-transfer transitions.


Asunto(s)
Cobre/química , Naftiridinas/química , Compuestos Organometálicos/química , Compuestos Organometálicos/síntesis química , Procesos Fotoquímicos , Análisis Espectral , Compuestos de Vinilo/química , Cristalografía por Rayos X , Concentración de Iones de Hidrógeno , Isomerismo , Modelos Moleculares , Conformación Molecular , Teoría Cuántica
15.
Guang Pu Xue Yu Guang Pu Fen Xi ; 30(3): 586-90, 2010 Mar.
Artículo en Zh | MEDLINE | ID: mdl-20496665

RESUMEN

The molecular geometries of four 2,4-dimethyl-7-amino-1,8-naphthyridine derivatives were optimized with B3LYP/6-31G(d) method. The energies of their frontier molecular orbitals and the molecular structures were investigated theoretically. The theoretical electronic spectra were calculated with TD-DFT in gas phase, PCM-TD-B3LYP/6-31 + G(d) and semiempirical ZINDO in CH2 Cl2 solution. The influences of solvent model and calculation methods on the electronic absorption spectra were also probed. The calculated results show that delocalized pi bonds exist in the four 1,8-naphthyridine derivatives, and their energy gaps (deltaE) between HOMO and LUMO are relatively small. The variation in their deltaE values gives a consistent trend with that of their electronic absorption with lambda(max). Theoretical spectra achieved prove that their absorptions are red-shifted when the delocalization of pi electrons is enhanced or the capability to donate electron by a substituted group is increased. The maximum absorption peaks of the four derivatives originate from pi (HOMO) --> pi * (LUMO) transition. The spectra calculated at the PCM-B3LYP/6-31 + G(d) level have little difference from experimental results: the differences in wavelength are 2.6, 10.3, 5.3 and 6.9 nm, whereas those in energies are 0.03, 0.09, 0.04 and 0.08 eV, respectively. The obtained results suggest that electronic spectra calculated by TD-DFT on the bases of geometries optimized with B3LYP/6-31(d) are in agreement with experimental ones, and can account for the different spectroscopic properties of the four 1,8-naphthyridine derivatives.

16.
Guang Pu Xue Yu Guang Pu Fen Xi ; 30(5): 1342-6, 2010 May.
Artículo en Zh | MEDLINE | ID: mdl-20672630

RESUMEN

A new ligand N, N-bis[(diphenylphosphino)methyl]-2-pyridinylamine (L) and its luminescent dinuclear copper(I) complex [CuBrL]1 (1) were synthesized and characterized by mass spectrometry, elemental analysis, NMR and electronic spectroscopies. The structure of complex 1 was determined by X-ray crystal analysis to be a dinuclear complex with a pseudo-tetrahedral geometry. The complex 1 crystallizes in a triclinic space group P-1 and has two copper(I ) centers bridged by two halogen ligands to form the dinuclear structure with a four-membered Cu2 Br2 ring. The Cu-Cu distance in complex 1 is 0.306 0 nm which is longer than a sum of Van der Waals radius of two copper( I ) atoms. Therefore there is no substantial interaction between the two copper(I) centers in complex 1. DFT calculations indicate that the electron density of HOMO is distributed mainly over the copper, bromine and phosphorus atoms, while that of LUMO is localized on the ligand. Our work shows that there are two mechanisms to form the the lowest excited state of complex 1, i.e. the metal-to-ligand charge transfer (MLCT) and halogen-to-ligand charge transfer (XLCT).

17.
RSC Adv ; 10(10): 5930-5937, 2020 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-35497418

RESUMEN

Metal nanoparticles are synthesized via various methods and have found many applications in areas such as sensing, electronics and catalysis. Light induced formation of noble metal nanoparticles, especially platinum, in solution or loaded on semiconductor surfaces, is an established practice in photocatalysis. Nevertheless, preparation of catalytically-active non-precious metal nanoparticles via photo-reduction still have room to be further explored. Here, we report a visible light driven system that can coordinate photo-reduction of CuSO4 to selectively prepare Cu2O or Cu nanoparticles, while at the same time, mediating efficient hydrogen production with in situ generating Cu catalyst without further need to add any components. The Cu2O and Cu nanoparticles in situ generated are crystalline in nature and can perform as pre-catalyst (Cu2O) or catalyst (Cu) to catalyze hydrogen production when reincorporated into the same photo-reduction system with organic photosensitizers. Our work offers an exploratory pathway to prepare target metal nanoparticles while provides some insight into harnessing solar energy for multi-functional purposes.

18.
Chem Commun (Camb) ; 55(77): 11523-11526, 2019 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-31490482

RESUMEN

New spherical hybrid materials as-synthesized by Cobalt oxide nanoparticles immobilized in situ on the outside surfaces of mesoporous silica particles exhibited highly efficient visible-light-driven catalytic performance towards CO2-to-CO conversion. An average generation rate of CO of up to 25 626 µmol h-1 g-1 with a selectivity of 83.0% was achieved.

19.
ACS Omega ; 3(2): 1904-1911, 2018 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-31458502

RESUMEN

CoP was synthesized in situ on the surface of CdS nanowires using a cobalt-ammine complex as a precursor. The generated CoP@CdS photocatalyst was well characterized by X-ray diffraction, transmission electron microscopy, selected-area electron diffraction, and diffuse reflectance spectra. A more efficient charge transfer was successfully achieved owing to the close contact between CoP and CdS. The hybrid photocatalyst showed excellent activity for the reduction of nitroarenes to the corresponding anilines or azobenzene compounds in water. In present work, hydrogen evolution and nitro reduction were concurrent and with the consumption of substrate, the rate of hydrogen evolution increased. The driving force for the reduction originated from the activated hydrogen species in the photocatalytic reaction rather than from dihydrogen. The photocatalytic activity of as-prepared CoP@CdS in situ is comparable to that of the catalysts formed using a noble metal loaded onto CdS. Mechanistic investigation showed that the condensation route is the major pathway for nitro reduction in the present system, and azo compounds could be obtained with less irradiation time, while aniline will be obtained via long-time irradiation.

20.
Chem Commun (Camb) ; 54(41): 5181-5184, 2018 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-29610799

RESUMEN

The heteroporous MoS2/Ni3S2 catalyst exhibits excellent electrocatalytic activity for the overall urea splitting with only a cell voltage of 1.45 V at 20 mA cm-2 in 1 M KOH with 0.33 M urea. This value is the best of all the bifunctional urea splitting electrocatalysts, including Pt, reported to date.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA