RESUMEN
Somatic cells can be reprogrammed into pluripotent stem cells (PSCs) by using pure chemicals, providing a different paradigm to study somatic reprogramming. However, the cell fate dynamics and molecular events that occur during the chemical reprogramming process remain unclear. We now show that the chemical reprogramming process requires the early formation of extra-embryonic endoderm (XEN)-like cells and a late transition from XEN-like cells to chemically-induced (Ci)PSCs, a unique route that fundamentally differs from the pathway of transcription factor-induced reprogramming. Moreover, precise manipulation of the cell fate transition in a step-wise manner through the XEN-like state allows us to identify small-molecule boosters and establish a robust chemical reprogramming system with a yield up to 1,000-fold greater than that of the previously reported protocol. These findings demonstrate that chemical reprogramming is a promising approach to manipulate cell fates.
Asunto(s)
Técnicas de Reprogramación Celular , Células Madre Pluripotentes/citología , Animales , Descubrimiento de Drogas , Embrión de Mamíferos/citología , Endodermo/citología , Endodermo/metabolismo , Fibroblastos/metabolismo , Expresión Génica , Ratones , Células Madre Pluripotentes/efectos de los fármacosRESUMEN
Fumarate is an oncometabolite. However, the mechanism underlying fumarate-exerted tumorigenesis remains unclear. Here, utilizing human type2 papillary renal cell carcinoma (PRCC2) as a model, we show that fumarate accumulates in cells deficient in fumarate hydratase (FH) and inhibits PTEN to activate PI3K/AKT signaling. Mechanistically, fumarate directly reacts with PTEN at cysteine 211 (C211) to form S-(2-succino)-cysteine. Succinated C211 occludes tethering of PTEN with the cellular membrane, thereby diminishing its inhibitory effect on the PI3K/AKT pathway. Functionally, re-expressing wild-type FH or PTEN C211S phenocopies an AKT inhibitor in suppressing tumor growth and sensitizing PRCC2 to sunitinib. Analysis of clinical specimens indicates that PTEN C211 succination levels are positively correlated with AKT activation in PRCC2. Collectively, these findings elucidate a non-metabolic, oncogenic role of fumarate in PRCC2 via direct post-translational modification of PTEN and further reveal potential stratification strategies for patients with FH loss by combinatorial AKTi and sunitinib therapy.
Asunto(s)
Carcinoma Papilar , Carcinoma de Células Renales , Fumaratos , Neoplasias Renales , Fosfohidrolasa PTEN , Carcinogénesis , Carcinoma Papilar/tratamiento farmacológico , Carcinoma Papilar/enzimología , Carcinoma Papilar/genética , Carcinoma Papilar/metabolismo , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/enzimología , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/metabolismo , Cisteína/metabolismo , Resistencia a Antineoplásicos , Fumarato Hidratasa/genética , Fumarato Hidratasa/metabolismo , Fumaratos/farmacología , Humanos , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/enzimología , Neoplasias Renales/genética , Neoplasias Renales/metabolismo , Fosfohidrolasa PTEN/antagonistas & inhibidores , Fosfohidrolasa PTEN/genética , Fosfatidilinositol 3-Quinasas/genética , Proteínas Proto-Oncogénicas c-akt/genética , Sunitinib/farmacologíaRESUMEN
Cellular reprogramming can manipulate the identity of cells to generate the desired cell types1-3. The use of cell intrinsic components, including oocyte cytoplasm and transcription factors, can enforce somatic cell reprogramming to pluripotent stem cells4-7. By contrast, chemical stimulation by exposure to small molecules offers an alternative approach that can manipulate cell fate in a simple and highly controllable manner8-10. However, human somatic cells are refractory to chemical stimulation owing to their stable epigenome2,11,12 and reduced plasticity13,14; it is therefore challenging to induce human pluripotent stem cells by chemical reprogramming. Here we demonstrate, by creating an intermediate plastic state, the chemical reprogramming of human somatic cells to human chemically induced pluripotent stem cells that exhibit key features of embryonic stem cells. The whole chemical reprogramming trajectory analysis delineated the induction of the intermediate plastic state at the early stage, during which chemical-induced dedifferentiation occurred, and this process was similar to the dedifferentiation process that occurs in axolotl limb regeneration. Moreover, we identified the JNK pathway as a major barrier to chemical reprogramming, the inhibition of which was indispensable for inducing cell plasticity and a regeneration-like program by suppressing pro-inflammatory pathways. Our chemical approach provides a platform for the generation and application of human pluripotent stem cells in biomedicine. This study lays foundations for developing regenerative therapeutic strategies that use well-defined chemicals to change cell fates in humans.
Asunto(s)
Diferenciación Celular , Reprogramación Celular , Células Madre Pluripotentes Inducidas , Linaje de la Célula , Humanos , Células Madre Pluripotentes Inducidas/citologíaRESUMEN
BACKGROUND: Alterations in fibroblast growth factor receptor 2 (FGFR2) have emerged as promising drug targets for intrahepatic cholangiocarcinoma, a rare cancer with a poor prognosis. Futibatinib, a next-generation, covalently binding FGFR1-4 inhibitor, has been shown to have both antitumor activity in patients with FGFR-altered tumors and strong preclinical activity against acquired resistance mutations associated with ATP-competitive FGFR inhibitors. METHODS: In this multinational, open-label, single-group, phase 2 study, we enrolled patients with unresectable or metastatic FGFR2 fusion-positive or FGFR2 rearrangement-positive intrahepatic cholangiocarcinoma and disease progression after one or more previous lines of systemic therapy (excluding FGFR inhibitors). The patients received oral futibatinib at a dose of 20 mg once daily in a continuous regimen. The primary end point was objective response (partial or complete response), as assessed by independent central review. Secondary end points included the response duration, progression-free and overall survival, safety, and patient-reported outcomes. RESULTS: Between April 16, 2018, and November 29, 2019, a total of 103 patients were enrolled and received futibatinib. A total of 43 of 103 patients (42%; 95% confidence interval, 32 to 52) had a response, and the median duration of response was 9.7 months. Responses were consistent across patient subgroups, including patients with heavily pretreated disease, older adults, and patients who had co-occurring TP53 mutations. At a median follow-up of 17.1 months, the median progression-free survival was 9.0 months and overall survival was 21.7 months. Common treatment-related grade 3 adverse events were hyperphosphatemia (in 30% of the patients), an increased aspartate aminotransferase level (in 7%), stomatitis (in 6%), and fatigue (in 6%). Treatment-related adverse events led to permanent discontinuation of futibatinib in 2% of the patients. No treatment-related deaths occurred. Quality of life was maintained throughout treatment. CONCLUSIONS: In previously treated patients with FGFR2 fusion or rearrangement-positive intrahepatic cholangiocarcinoma, the use of futibatinib, a covalent FGFR inhibitor, led to measurable clinical benefit. (Funded by Taiho Oncology and Taiho Pharmaceutical; FOENIX-CCA2 ClinicalTrials.gov number, NCT02052778.).
Asunto(s)
Antineoplásicos , Neoplasias de los Conductos Biliares , Conductos Biliares Intrahepáticos , Colangiocarcinoma , Inhibidores de Proteínas Quinasas , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos , Anciano , Humanos , Neoplasias de los Conductos Biliares/tratamiento farmacológico , Neoplasias de los Conductos Biliares/genética , Neoplasias de los Conductos Biliares/metabolismo , Conductos Biliares Intrahepáticos/metabolismo , Conductos Biliares Intrahepáticos/patología , Colangiocarcinoma/tratamiento farmacológico , Colangiocarcinoma/genética , Colangiocarcinoma/metabolismo , Inhibidores de Proteínas Quinasas/efectos adversos , Inhibidores de Proteínas Quinasas/uso terapéutico , Calidad de Vida , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/metabolismo , Antineoplásicos/administración & dosificaciónRESUMEN
Conducting polymers are mixed ionic-electronic conductors that are emerging candidates for neuromorphic computing, bioelectronics and thermoelectrics. However, fundamental aspects of their many-body correlated electron-ion transport physics remain poorly understood. Here we show that in p-type organic electrochemical transistors it is possible to remove all of the electrons from the valence band and even access deeper bands without degradation. By adding a second, field-effect gate electrode, additional electrons or holes can be injected at set doping states. Under conditions where the counterions are unable to equilibrate in response to field-induced changes in the electronic carrier density, we observe surprising, non-equilibrium transport signatures that provide unique insights into the interaction-driven formation of a frozen, soft Coulomb gap in the density of states. Our work identifies new strategies for substantially enhancing the transport properties of conducting polymers by exploiting non-equilibrium states in the coupled system of electronic charges and counterions.
RESUMEN
Ischemia-reperfusion injury (IRI) is a cumulation of pathophysiological processes that involves cell and organelle damage upon blood flow constraint and subsequent restoration. However, studies on overall immune infiltration and ferroptosis in liver ischemia-reperfusion injury (LIRI) are limited. This study explored immune cell infiltration and ferroptosis in LIRI using bioinformatics and experimental validation. The GSE151648 dataset, including 40 matched pairs of pre- and post- transplant liver samples was downloaded for bioinformatic analysis. Eleven hub genes were identified by overlapping differentially expressed genes (DEGs), iron genes, and genes identified through weighted gene co-expression network analysis (WGCNA). Subsequently, the pathway enrichment, transcription factor-target, microRNA-mRNA and protein-protein interaction networks were investigated. The diagnostic model was established by logistic regression, which was validated in the GSE23649 and GSE100155 datasets and verified using cytological experiments. Moreover, several drugs targeting these genes were found in DrugBank, providing a more effective treatment for LIRI. In addition, the expression of 11 hub genes was validated using quantitative real-time polymerase chain reaction (qRT-PCR) in liver transplantation samples and animal models. The expression of the 11 hub genes increased in LIRI compared with the control. Five genes were significantly enriched in six biological process terms, six genes showed high enrichment for LIRI-related signaling pathways. There were 56 relevant transcriptional factors and two central modules in the protein-protein interaction network. Further immune infiltration analysis indicated that immune cells including neutrophils and natural killer cells were differentially accumulated in the pre- and post-transplant groups, and this was accompanied by changes in immune-related factors. Finally, 10 targeted drugs were screened. Through bioinformatics and further experimental verification, we identified hub genes related to ferroptosis that could be used as potential targets to alleviate LIRI.
Asunto(s)
Ferroptosis , Hígado , Mapas de Interacción de Proteínas , Daño por Reperfusión , Ferroptosis/genética , Animales , Daño por Reperfusión/genética , Daño por Reperfusión/metabolismo , Daño por Reperfusión/inmunología , Hígado/metabolismo , Humanos , Redes Reguladoras de Genes , Masculino , Ratones , Trasplante de HígadoRESUMEN
Dynamic biological structures involve the continual turnover of molecules within supramolecular assemblies such as tubulin. Inspired by dynamic biology self-organizing systems, we build an artificial dynamic structure based on DNA nanotechnology through a nonequilibrium chemical system. Herein, a metastable domain (MD), essentially a stem-loop structure, was introduced into DNA hairpins within hybridization chain reaction (HCR), thereby imparting dynamic activity to the DNA polymers. Hairpins with MD thermodynamically assemble to a high-energy polymer in the presence of trigger strands. The polymer can relax back to the stable unassembled state once the invader is added and finally relax to the activated hairpin by an anti-invader. Reversible assembly/disassembly of the HCR is achieved through invader/anti-invader cycles. We accomplished kinetic modulation, reversible conformational switching, cascading regulation, and enzyme activity control through the MD-HCR. We believe that the design of the MD-HCR could inspire the development of autonomous biological functions within artificial systems.
Asunto(s)
ADN , Tubulina (Proteína) , Tubulina (Proteína)/genética , ADN/química , Hibridación de Ácido Nucleico , NanotecnologíaRESUMEN
Lipid rafts are membrane microdomains rich in cholesterol, sphingolipids, glycosylphosphatidylinositol-anchored proteins (GPI-APs), and receptors. These lipid raft components are localized at the plasma membrane and are essential for signal transmission and organogenesis. However, few reports have been published on the specific effects of lipid rafts on tooth development. Using microarray and single-cell RNA sequencing methods, we found that a GPI-AP, lymphocyte antigen-6/Plaur domain-containing 1 (Lypd1), was specifically expressed in preodontoblasts. Depletion of Lypd1 in tooth germ using an ex vivo organ culture system and in mouse dental pulp (mDP) cells resulted in the inhibition of odontoblast differentiation. Activation of bone morphogenetic protein (BMP) signaling by BMP2 treatment in mDP cells promoted odontoblast differentiation via phosphorylation of Smad1/5/8, while this BMP2-mediated odontoblast differentiation was inhibited by depletion of Lypd1. Furthermore, we created a deletion construct of the C terminus containing the omega site in LYPD1; this site is necessary for localizing GPI-APs to the plasma membrane and lipid rafts. We identified that this site is essential for odontoblast differentiation and morphological change of mDP cells. These findings demonstrated that LYPD1 is a novel marker of preodontoblasts in the developing tooth; in addition, they suggest that LYPD1 is important for tooth development and that it plays a pivotal role in odontoblast differentiation by regulating Smad1/5/8 phosphorylation through its effect as a GPI-AP in lipid rafts.
Asunto(s)
Diferenciación Celular , Proteínas Ligadas a GPI , Odontoblastos , Odontogénesis , Animales , Ratones , Proteínas Morfogenéticas Óseas/metabolismo , Membrana Celular/metabolismo , Regulación del Desarrollo de la Expresión Génica , Glicosilfosfatidilinositoles/metabolismo , Proteínas Ligadas a GPI/metabolismo , Microdominios de Membrana/metabolismo , Odontoblastos/citología , Odontoblastos/metabolismo , Dominios ProteicosRESUMEN
Phloem-feeding insects include many important agricultural pests that cause crop damage globally, either through feeding-related damage or upon transmission of viruses and microbes that cause plant diseases. With genetic crop resistances being limited to most of these pests, control relies on insecticides, which are costly and damaging to the environment and to which insects can develop resistance. Like other plant parasites, phloem-feeding insects deliver effectors inside their host plants to promote susceptibility, most likely by a combination of suppressing immunity and promoting nutrient availability. The recent emergence of the effector paradigm in plant-insect interactions is highlighted by increasing availability of effector repertoires for a range of species and a broadening of our knowledge concerning effector functions. Here, we focus on recent progress made toward identification of effector repertoires from phloem-feeding insects and developments in effector biology that will advance functional characterization studies. Importantly, identification of effector activities from herbivorous insects promises to provide new avenues toward development of crop protection strategies. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Asunto(s)
Floema , Saliva , Animales , Saliva/metabolismo , Floema/metabolismo , Insectos , Plantas , HerbivoriaRESUMEN
Metal-hydride-catalyzed alkene hydroalkylation has been developed as an efficient method for C(sp3)-C(sp3) coupling with broad substrate availability and high functional group compatibility. However, auxiliary groups, a conjugated group or a chelation-directing group, are commonly required to attain high regio- and enantioselectivities. Herein, we reported a ligand-controlled cobalt-hydride-catalyzed regio-, enantio-, and diastereoselective oxyheterocyclic alkene hydroalkylation without chelation-directing groups. This reaction enables the hydroalkylation of conjugated and unconjugated oxyheterocyclic alkenes to deliver C2- or C3-alkylated tetrahydrofuran or tetrahydropyran in uniformly good yields and with high regio- and enantioselectivities. In addition, hydroalkylation of C2-substituted 2,5-dihydrofuran resulted in the simultaneous construction of 1,3-distereocenters, providing convenient access to polysubstituted tetrahydrofuran with multiple enantioenriched C(sp3) centers.
RESUMEN
Triphenylmethyl (trityl) radicals have shown potential for use in organic optoelectronic applications, but the design of practical trityl structures has been limited to donor/radical charge-transfer systems due to the poor luminescence of alternant symmetry hydrocarbons. Here, we circumvent the symmetry-forbidden transition of alternant hydrocarbons via excited-state symmetry breaking in a series of phenyl-substituted tris(2,4,6-trichlorophenyl)methyl (TTM) radicals. We show that 3-fold phenyl substitution enhances the emission of the TTM radical and that steric control modulates the optical properties in these systems. Simple ortho-methylphenyl substitution boosts the photoluminescence quantum efficiency from 1% (for TTM) to 65% at a peak wavelength of 612 nm (for 2-T3TTM) in solution. In the crystalline solid state, the neat 2-T3TTM radical shows a remarkably high photoluminescence quantum efficiency of 25% for emission peaking at 706 nm. This has implications in the design of aryl-substituted radical structures where the electronic coupling of the substituents influences variables such as emission, charge transfer, and spin interaction.
RESUMEN
Bladder cancer ranks as the 10th most common cancer worldwide, with deteriorating prognosis as the disease advances. While immune checkpoint inhibitors (ICIs) have shown promise in clinical therapy in both operable and advanced bladder cancer, identifying patients who will respond is challenging. Anoikis, a specialized form of cell death that occurs when cells detach from the extracellular matrix, is closely linked to tumor progression. Here, we aimed to explore the anoikis-based biomarkers for bladder cancer prognosis and immunotherapeutic decisions. Through consensus clustering, we categorized patients from the TCGA-BLCA cohort into two clusters based on anoikis-related genes (ARGs). Significant differences in survival outcome, clinical features, tumor immune environment (TIME), and potential ICIs response were observed between clusters. We then formulated a four-gene signature, termed "Ascore", to encapsulate this gene expression pattern. The Ascore was found to be closely associated with survival outcome and served as an independent prognosticator in both the TCGA-BLCA cohort and the IMvigor210 cohort. It also demonstrated superior predictive capacity (AUC = 0.717) for bladder cancer immunotherapy response compared to biomarkers like TMB and PD-L1. Finally, we evaluated Ascore's independent prognostic performance as a non-invasive biomarker in our clinical cohort (Gulou-Cohort1) using circulating tumor cells detection, achieving an AUC of 0.803. Another clinical cohort (Gulou-Cohort2) consisted of 40 patients undergoing neoadjuvant anti-PD-1 treatment was also examined. Immunohistochemistry of Ascore in these patients revealed its correlation with the pathological response to bladder cancer immunotherapy (P = 0.004). Impressively, Ascore (AUC = 0.913) surpassed PD-L1 (AUC = 0.662) in forecasting immunotherapy response and indicated better net benefit. In conclusion, our study introduces Ascore as a novel, robust prognostic biomarker for bladder cancer, offering a new tool for enhancing immunotherapy decisions and contributing to the tailored treatment approaches in this field.
Asunto(s)
Antígeno B7-H1 , Neoplasias de la Vejiga Urinaria , Humanos , Pronóstico , Antígeno B7-H1/genética , Anoicis/genética , Progresión de la Enfermedad , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/terapia , Inmunoterapia , Biomarcadores , Microambiente TumoralRESUMEN
T-cell lymphoma is a highly invasive tumor with significant heterogeneity. Invasive tissue biopsy is the gold standard for acquiring molecular data and categorizing lymphoma patients into genetic subtypes. However, surgical intervention is unfeasible for patients who are critically ill, have unresectable tumors, or demonstrate low compliance, making tissue biopsies inaccessible to these patients. A critical need for a minimally invasive approach in T-cell lymphoma is evident, particularly in the areas of early diagnosis, prognostic monitoring, treatment response, and drug resistance. Therefore, the clinical application of liquid biopsy techniques has gained significant attention in T-cell lymphoma. Moreover, liquid biopsy requires fewer samples, exhibits good reproducibility, and enables real-time monitoring at molecular levels, thereby facilitating personalized health care. In this review, we provide a comprehensive overview of the current liquid biopsy biomarkers used for T-cell lymphoma, focusing on circulating cell-free DNA (cfDNA), circulating tumor DNA (ctDNA), circulating tumor cells (CTCs), Epstein-Barr virus (EBV) DNA, antibodies, and cytokines. Additionally, we discuss their clinical application, detection methodologies, ongoing clinical trials, and the challenges faced in the field of liquid biopsy.
Asunto(s)
Infecciones por Virus de Epstein-Barr , Linfoma de Células T , Humanos , Reproducibilidad de los Resultados , Biomarcadores de Tumor/genética , Herpesvirus Humano 4 , Biopsia Líquida/métodos , Linfoma de Células T/diagnóstico , Linfoma de Células T/genéticaRESUMEN
Intrahepatic cholangiocarcinoma (ICC) is a highly malignant and aggressive cancer whose incidence and mortality continue to increase, whereas its prognosis remains dismal. Tumor-associated macrophages (TAMs) promote malignant progression and immune microenvironment remodeling through direct contact and secreted mediators. Targeting TAMs has emerged as a promising strategy for ICC treatment. Here, we revealed the potential regulatory function of immune responsive gene 1 (IRG1) in macrophage polarization. We found that IRG1 expression remained at a low level in M2 macrophages. IRG1 overexpression can restrain macrophages from polarizing to the M2 type, which results in inhibition of the proliferation, invasion, and migration of ICC, whereas IRG1 knockdown exerts the opposite effects. Mechanistically, IRG1 inhibited the tumor-promoting chemokine CCL18 and thus suppressed ICC progression by regulating STAT3 phosphorylation. The intervention of IRG1 expression in TAMs may serve as a potential therapeutic target for delaying ICC progression.
Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Humanos , Colangiocarcinoma/patología , Macrófagos/metabolismo , Pronóstico , Conductos Biliares Intrahepáticos/metabolismo , Neoplasias de los Conductos Biliares/patología , Línea Celular Tumoral , Microambiente Tumoral , Quimiocinas CC/metabolismo , Factor de Transcripción STAT3/metabolismoRESUMEN
In-sensor computing has attracted considerable interest as a solution for overcoming the energy efficiency and response time limitations of the traditional von Neumann architecture. Recently, emerging memristors based on transition-metal oxides (TMOs) have attracted attention as promising candidates for in-memory computing owing to their tunable conductance, high speed, and low operational energy. However, the poor photoresponse of TMOs presents challenges for integrating sensing and processing units into a single device. This integration is crucial for eliminating the need for a sensor/processor interface and achieving energy-efficient in-sensor computing systems. In this study, a Si/CuO heterojunction-based photomemristor is proposed that combines the reversible resistive switching behavior of CuO with the appropriate optical absorption bandgap of the Si substrate. The proposed photomemristor demonstrates a simultaneous reconfigurable, non-volatile, and self-powered photoresponse, producing a microampere-level photocurrent at zero bias. The controlled migration of oxygen vacancies in CuO result in distinct energy-band bending at the interface, enabling multiple levels of photoresponsivity. Additionally, the device exhibits high stability and ultrafast response speed to the built-in electric field. Furthermore, the prototype photomemristor can be trained to emulate the attention-driven nature of the human visual system, indicating the tremendous potential of TMO-based photomemristors as hardware foundations for in-sensor computing.
RESUMEN
The anti-solvent-free fabrication of high-efficiency perovskite solar cells (PSCs) holds immense significance for the transition from laboratory-scale to large-scale commercial applications. However, the device performance is severely hindered by the increased occurrence of surface defects resulting from the lack of control over nucleation and crystallization of perovskite using anti-solvent methods. In this study, 2-(naphthalen-2-yl)ethylamine hydriodide (NEAI) is employed as the surface passivator for perovskite films without using any anti-solvent. Naphthalene demonstrates strong π-π conjugation, which aids in the efficient extraction of charge carriers. Additionally, the naphthalene-ring moieties form a tight attachment to the perovskite surface. After NEAI treatment, FA and I vacancies are selectively occupied by NEA+ and I- in NEAI respectively, thus effectively passivating the surface defects and isolating the surface from moisture. Ultimately, the optimized NEAI-treated device achieves a promising power conversion efficiency (PCE) of 24.19% (with a certified efficiency of 23.94%), featuring a high fill factor of 83.53%. It stands out as one of the reported high PCEs achieved for PSCs using the spin-coating technique without the need for any anti-solvent so far. Furthermore, the NEAI-treated device can maintain ≈87% of its initial PCE after 2000 h in ambient air with a relative humidity of 30% ± 5%.
RESUMEN
The cornea is the outermost layer of the eye and plays an essential role in our visual system. Limbal epithelial stem cells (LESCs), which are localized to a highly regulated limbal niche, are the master conductors of corneal epithelial regeneration. Damage to LESCs and their niche may result in limbal stem cell deficiency (LSCD), a disease confused ophthalmologists so many years and can lead to corneal conjunctivalization, neovascularization, and even blindness. How to restore the LESCs function is the hot topic for ocular scientists and clinicians around the world. This review introduced LESCs and the niche microenvironment, outlined various techniques for isolating and culturing LESCs used in LSCD research, presented common diseases that cause LSCD, and provided a comprehensive overview of both the diagnosis and multiple treatments for LSCD from basic research to clinical therapies, especially the emerging cell therapies based on various stem cell sources. In addition, we also innovatively concluded the latest strategies in recent years, including exogenous drugs, tissue engineering, nanotechnology, exosome and gene therapy, as well as the ongoing clinical trials for treating LSCD in recent five years. Finally, we highlighted challenges from bench to bedside in LSCD and discussed cutting-edge areas in LSCD therapeutic research. We hope that this review could pave the way for future research and translation on treating LSCD, a crucial step in the field of ocular health.
Asunto(s)
Epitelio Corneal , Limbo de la Córnea , Regeneración , Células Madre , Humanos , Limbo de la Córnea/citología , Limbo de la Córnea/patología , Células Madre/citología , Epitelio Corneal/citología , Epitelio Corneal/patología , Animales , Medicina de Precisión , Células EpitelialesRESUMEN
Aerococcus viridans (A. viridans) is an important opportunistic zoonotic pathogen that poses a potential threat to the animal husbandry industry, such as cow mastitis, due to the widespread development of multidrug-resistant strains. Phage lysins have emerged as a promising alternative antibiotic treatment strategy. However, no lysins have been reported to treat A. viridans infections. In this study, the critical active domain and key active sites of the first A. viridans phage lysin AVPL were revealed. AVPL consists of an N-terminal N-acetylmuramoyl-L-alanine amidase catalytic domain and a C-terminal binding domain comprising two conserved LysM. H40, N44, E52, W68, H147, T157, F60, F64, I77, N92, Q97, H159, V160, D161, and S42 were identified as key sites for maintaining the activity of the catalytic domain. The LysM motif plays a crucial role in binding AVPL to bacterial cell wall peptidoglycan. AVPL maintains stable activity in the temperature range of 4-45°C and pH range of 4-10, and its activity is independent of the presence of metal ions. In vitro, the bactericidal effect of AVPL showed efficient bactericidal activity in milk samples, with 2 µg/mL of AVPL reducing A. viridans by approximately 2 Log10 in 1 h. Furthermore, a single dose (25 µg) of lysin AVPL significantly reduces bacterial load (approximately 2 Log10) in the mammary gland of mice, improves mastitis pathology, and reduces the concentration of inflammatory cytokines (TNF-α, IL-1ß, and IL-6) in mammary tissue. Overall, this work provides a novel alternative therapeutic drug for mastitis induced by multidrug-resistant A. viridans. IMPORTANCE: A. viridans is a zoonotic pathogen known to cause various diseases, including mastitis in dairy cows. In recent years, there has been an increase in antibiotic-resistant or multidrug-resistant strains of this pathogen. Phage lysins are an effective approach to treating infections caused by multidrug-resistant strains. This study revealed the biological properties and key active sites of the first A. viridans phage lysin named AVPL. AVPL can effectively kill multidrug-resistant A. viridans in pasteurized whole milk. Importantly, 25 µg AVPL significantly alleviates the symptoms of mouse mastitis induced by A. viridans. Overall, our results demonstrate the potential of lysin AVPL as an antimicrobial agent for the treatment of mastitis caused by A. viridans.
Asunto(s)
Aerococcus , Bacteriófagos , Infecciones por Bacterias Grampositivas , Mastitis , Animales , Femenino , Ratones , Aerococcus/efectos de los fármacos , Bacteriófagos/genética , Infecciones por Bacterias Grampositivas/tratamiento farmacológico , Infecciones por Bacterias Grampositivas/microbiología , Mastitis/microbiología , Mastitis/tratamiento farmacológico , Mastitis/veterinaria , Ratones Endogámicos BALB C , Modelos Animales de Enfermedad , Peptidoglicano/metabolismo , Terapia de Fagos , Proteínas Virales/metabolismo , Proteínas Virales/genéticaRESUMEN
To investigate the relationship between the expression of hepatitis B virus (HBV) functional receptor sodium taurocholate cotransporting polypeptide (NTCP) with disease progression and gender-specific differences in chronic HBV-infected patients. Liver samples were collected from chronic HBV-infected patients who underwent percutaneous liver biopsy or liver surgery. HBV DNA levels and the mRNA and protein expression levels of NTCP in liver tissues were determined. The relationship between NTCP expression and HBV DNA levels, inflammatory activity, fibrosis, and gender-specific differences were analyzed. A total of 94 chronic HBV-infected patients were included. Compared with patients with a METAVIR score of A0-1 or F0-1, patients with score of A2 or F2/F3 had a relatively higher level of NTCP expression. NTCP levels were positively correlated with HBV DNA levels. The inflammatory activity scores and fibrosis scores of women <50 years were significantly lower than those of women ≥50 years and age-matched males. In patients with score A0-2 or F0-3, women <50 years have lower NTCP expression level compared to women ≥50 years and age-matched males. NTCP can promote the disease progression by affecting the viral load of HBV. The NTCP expression difference may be why male and postmenopausal women are more prone to disease progression than reproductive women.
Asunto(s)
Hepatitis B Crónica , Transportadores de Anión Orgánico Sodio-Dependiente , Simportadores , Femenino , Humanos , Masculino , Progresión de la Enfermedad , ADN Viral/genética , Fibrosis , Virus de la Hepatitis B , Hepatitis B Crónica/genética , Inflamación , Transportadores de Anión Orgánico Sodio-Dependiente/genética , Simportadores/genética , Persona de Mediana EdadRESUMEN
The large-scale deployment of quantum secret sharing (QSS) in quantum networks is currently challenging due to the requirements for the generation and distribution of multipartite entanglement states. Here we present an efficient source-independent QSS protocol utilizing entangled photon pairs in quantum networks. Through the post-matching method, which means the measurement events in the same basis are matched, the key rate is almost independent of the number of participants. In addition, the unconditional security of our QSS against internal and external eavesdroppers can be proved by introducing an equivalent virtual protocol. Our protocol has great performance and technical advantages in future quantum networks.