Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(5)2022 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-35269932

RESUMEN

The Special Issue, "Molecular Research in Multiple Sclerosis", provides a better comprehension of the disease and establishes possible new biomarkers to ensure better care of MS patients in the future [...].


Asunto(s)
Esclerosis Múltiple , Biomarcadores , Humanos , Esclerosis Múltiple/genética
2.
Int J Mol Sci ; 23(14)2022 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-35886999

RESUMEN

Nucleostemin (NS; a product of the GNL3 gene) is a nucleolar-nucleoplasm shuttling GTPase whose levels are high in stem cells and rapidly decrease upon differentiation. NS levels are also high in several solid and hematological neoplasms, including acute myeloid leukaemia (AML). While a role in telomere maintenance, response to stress stimuli and favoring DNA repair has been proposed in solid cancers, little or no information is available as to the role of nucleostemin in AML. Here, we investigate this issue via a proteomics approach. We use as a model system the OCI-AML 3 cell line harboring a heterozygous mutation at the NPM1 gene, which is the most frequent driver mutation in AML (approximately 30% of total AML cases). We show that NS is highly expressed in this cell line, and, contrary to what has previously been shown in other cancers, that its presence is dispensable for cell growth and viability. However, proteomics analysis of the OCI-AML 3 cell line before and after nucleostemin (NS) silencing showed several effects on different biological functions, as highlighted by ingenuity pathway analysis (IPA). In particular, we report an effect of down-regulating DNA repair through homologous recombination, and we confirmed a higher DNA damage rate in OCI-AML 3 cells when NS is depleted, which considerably increases upon stress induced by the topoisomerase II inhibitor etoposide. The data used are available via ProteomeXchange with the identifier PXD034012.


Asunto(s)
Proteínas de Unión al GTP , Leucemia Mieloide Aguda , Proteínas Nucleares , Nucleofosmina , Línea Celular Tumoral , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/metabolismo , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patología , Mutación , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Nucleofosmina/genética , Nucleofosmina/metabolismo , Proteómica
3.
ACS Meas Sci Au ; 4(3): 247-259, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38910860

RESUMEN

Precision medicine is a new medical approach which considers both population characteristics and individual variability to provide customized healthcare. The transition from traditional reactive medicine to personalized medicine is based on a biomarker-driven process and a deep knowledge of biological mechanisms according to which the development of diseases occurs. In this context, the advancements in high-throughput omics technologies represent a unique opportunity to discover novel biomarkers and to provide an unbiased picture of the biological system. One of the medical fields in which omics science has started to be recently applied is that of ophthalmology. Ocular diseases are very common, and some of them could be highly disabling, thus leading to vision loss and blindness. The pathogenic mechanism of most ocular diseases may be dependent on various genetic and environmental factors, whose effect has not been yet completely understood. In this context, large-scale omics approaches are fundamental to have a comprehensive evaluation of the whole system and represent an essential tool for the development of novel therapies. This Review summarizes the recent advancements in omics science applied to ophthalmology in the last ten years, in particular by focusing on proteomics, metabolomics and lipidomics applications from an analytical perspective. The role of high-efficiency separation techniques coupled to (high-resolution) mass spectrometry ((HR)MS) is also discussed, as well as the impact of sampling, sample preparation and data analysis as integrating parts of the analytical workflow.

4.
Cells ; 11(7)2022 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-35406724

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is a leading cause of cancer mortality worldwide. Non-specific symptoms, lack of biomarkers in the early stages, and drug resistance due to the presence of a dense fibrous stroma all contribute to the poor outcome of this disease. The extracellular matrix secreted by activated fibroblasts contributes to the desmoplastic tumor microenvironment formation. Given the importance of fibroblast activation in PDAC pathology, it is critical to recognize the mechanisms involved in the transformation of normal fibroblasts in the early stages of tumorigenesis. To this aim, we first identified the proteins released from the pancreatic cancer cell line MIA-PaCa2 by proteomic analysis of their conditioned medium (CM). Second, normal fibroblasts were treated with MIA-PaCa2 CM for 24 h and 48 h and their proteostatic changes were detected by proteomics. Pathway analysis indicated that treated fibroblasts undergo changes compatible with the activation of migration, vasculogenesis, cellular homeostasis and metabolism of amino acids and reduced apoptosis. These biological activities are possibly regulated by ITGB3 and TGFB1/2 followed by SMAD3, STAT3 and BAG3 activation. In conclusion, this study sheds light on the crosstalk between PDAC cells and associated fibroblasts. Data are available via ProteomeXchange with identifier PXD030974.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Medios de Cultivo Condicionados/metabolismo , Medios de Cultivo Condicionados/farmacología , Fibroblastos/metabolismo , Humanos , Neoplasias Pancreáticas/patología , Proteómica , Microambiente Tumoral , Neoplasias Pancreáticas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA