RESUMEN
Peruvian corn biodiversity is one of the highest in the world and may represent an important natural source of health relevant phenolic bioactive compounds whose potential needs to be investigated. This study investigated twenty-two Peruvian corn samples corresponding to five corn races (Arequipeño, Cabanita, Kculli, Granada and Coruca) in relation to their total phenolic contents (TPC), anthocyanin contents, Ultra-Performance Liquid Chromatography (UPLC) phenolic profiles and antioxidant capacity (ABTS and ORAC methods). Subsequently using both free and cell-wall bound phenolic fractions their health relevance targeting hyperglycemia (α-glucosidase and α-amylase inhibition) and obesity (lipase inhibition) potentials was evaluated using in vitro assay models. Antioxidant capacity and TPC were high in bound fractions from yellow-colored races in contrast to the purple-colored race (Kculli) which had high TPC (mainly anthocyanins) and antioxidant capacity in the free form. The major phenolic acids detected by UPLC were ferulic and p-coumaric acids. High α-glucosidase (32.5-76.1%, 25 mg sample dose) and moderate α-amylase inhibitory activities (13.6-29.0%, 250 mg sample dose) were found in all free fractions, but only samples from the Kculli race had lipase inhibitory activity (58.45-92.16%, 12.5 mg sample dose). Principal component analysis revealed that the variability of data was affected by the race and the α-glucosidase and lipase inhibitory activities positively correlated with anthocyanins and antioxidant capacity. Some accessions of Kculli, Granada and Cabanita races are promising for future breeding strategies focused on the development of improved corn varieties targeted for the design of functional foods relevant for hyperglycemia and obesity prevention.
RESUMEN
BACKGROUND: Flaxseed is an important source of lignan secoisolariciresinol diglucoside (SDG) and its aglycone, secoisolariciresinol (SECO). These phenolic compounds can be metabolized to the mammalian lignans enterodiol (ED) and enterolactone (EL) by human intestinal microflora. Flaxseed lignans are known for their potential health benefits, which are attributed to their antioxidant and phytoestrogenic properties. The focus of this study was to determine the bioaccessibility of plant and mammalian lignans in whole flaxseed (WF) and flaxseed flour (FF) throughout the entire digestive process. Moreover, the metabolic activity of intestinal microflora was evaluated. RESULTS: A single-batch in vitro simulation of the digestive process was performed, including fermentation by the intestinal microflora in the colon. Bioaccessibility was calculated as (free lignan)/(total lignan). In digested WF, the bioaccessibility values of SECO, ED and EL were 0.75%, 1.56% and 1.23%, respectively. Conversely, in digested FF, the bioaccessibility values of SDG, ED and EL were 2.06%, 2.72% and 1.04%, respectively. The anaerobic count and short-chain fatty acids indicate that bacteria survival and carbohydrate fermentation occurred. CONCLUSION: The contents of both SDG and ED were significantly higher in digested FF than in digested WF. FF facilitated the action of intestinal bacteria to release SDG and metabolize ED.
Asunto(s)
4-Butirolactona/análogos & derivados , Butileno Glicoles/metabolismo , Colon/metabolismo , Lino/química , Glucósidos/metabolismo , Lignanos/metabolismo , Semillas/química , 4-Butirolactona/metabolismo , Bacterias Anaerobias/crecimiento & desarrollo , Bacterias Anaerobias/metabolismo , Disponibilidad Biológica , Colon/microbiología , Ácidos Grasos Volátiles/metabolismo , Fermentación , Humanos , Técnicas In VitroRESUMEN
Avocado (P. americana Mill.) trees are classified into three botanical races, Mexican (M), Guatemalan (G), and West Indian (WI), each distinguished by their geographical centers of origin. While avocados are considered highly sensitive to flooding stress, comparative responses of the different races to short-term flooding are not known. This study assessed the differences in physiological and biochemical responses among clonal, non-grafted avocado cultivars of each race to short-term (2-3 days) flooding. In two separate experiments, each with different cultivars of each race, container-grown trees were divided into two treatments: 1) flooded and 2) non-flooded. Net CO2 assimilation (A), stomatal conductance (gs), and transpiration (Tr) were measured periodically over time beginning the day before treatments were imposed, through the flooding period, and during a recovery period (after unflooding). At the end of the experiments, concentrations of sugars in leaves, stems, and roots, and reactive oxygen species (ROS), antioxidants, and osmolytes in leaves and roots were determined. Guatemalan trees were more sensitive to short-term flooding than M or WI trees based on decreased A, gs, and Tr and survival of flooded trees. Guatemalan trees generally had less partitioning of sugars, particularly mannoheptulose, to the roots of flooded compared to non-flooded trees. Principal component analysis showed distinct clustering of flooded trees by race based on ROS and antioxidant profiles. Thus, differential partitioning of sugars and ROS and antioxidant responses to flooding among races may explain the greater flooding sensitivity of G trees compared to M and WI trees.
Asunto(s)
Persea , Especies Reactivas de Oxígeno , Antioxidantes , Hojas de la Planta/fisiología , InundacionesRESUMEN
Postharvest avocado losses are mainly due to anthracnose disease caused by Colletotrichum gloeosporioides. Chemical fungicides are effective, but their negative effects on health and the environment have led to the search for sustainable alternatives such as biopolymer-based coatings and natural compounds. Therefore, chitin nanocrystals (NCChit) were extracted using a sustainable deep eutectic solvent (DES) and chemically modified into oxidized chitin nanocrystals (O-NCChit) or deacetylated chitin nanocrystals (D-NCChit) to modulate and increase the charge surface density and the dispersibility of the crystals. The modified NCChits were dispersed with silk fibroins (SF), essential oil (EO), melatonin (MT) and/or phenylalanine (Phe) to elaborate active coatings. Antioxidant and antifungal in vitro analyses showed that the O-NCChit/SF-based coating had the best performance. In addition, in vivo tests were carried out through the artificial inoculation of C. gloeosporioides on coated avocados. O-NCChit/SF/MT-based coatings reduced the severity of anthracnose by 45 %, the same effect as the chemical fungicide (Prochloraz®). Moreover, avocado quality parameters during cold storage and the shelf-life period were also evaluated, where nonsignificant differences were observed. Therefore, this study demonstrates the great potential of O-NCChit and SF in combination with active compounds for the control of anthracnose in 'Hass' avocados.
Asunto(s)
Fibroínas , Fungicidas Industriales , Persea , Quitina/farmacología , Persea/química , Fibroínas/farmacología , Frutas/química , Fungicidas Industriales/farmacología , Enfermedades de las Plantas/prevención & control , Enfermedades de las Plantas/microbiologíaRESUMEN
Introduction: The raspberry (Rubus idaeus) fruit is characterized by good taste and high acceptability by consumers. Thus, the impact on the quality attributes and metabolites related to raspberry taste should be evaluated in crop alternatives such as the protected soilless culture. This study aimed to evaluate the metabolic changes during fruit development and postharvest of raspberry grown in open field and protected soilless culture and their relationship with quality parameters and sensory perception. Methods: In this study, the quality parameters and polar metabolites -sugar and amino acids- content were evaluated during raspberry ripening. In addition, ripe fruit was stored at 1 °C for five days, followed by one day of shelf life at 20 °C. Results: The physiological and quality parameters showed typical changes during ripening in both growing conditions: a constant production of CO2, a drastic loss of firmness, an increase in weight and soluble solids content, loss of acidity, and a turning to red color from the green to fully ripe fruit stages in both growing conditions. Fruit from the protected soilless culture had significantly higher weight but a lower soluble solids content. The metabolic analysis showed differences in primary metabolites content during ripening and storage at 1 °C between both growing conditions. The raspberries grown in the open field showed higher contents of sugars such as D-glucose and D-fructose. On the contrary, the fruit from the protected soilless culture showed higher contents of some amino acids such as L-alanine, L-serine and L-valine, among others. The sensorial panel showed significant differences in the perception of the sweetness, acidity, color and firmness of ripe fruit from both growing conditions. Discussion: The present study provides interesting and useful results with direct commercial application for this alternative growing system, mainly in areas where soil and water scarcity are a reality.
RESUMEN
The high diversity of the Peruvian Andean maize (Zea mays L.) represents a biological and genetic heritage relevant for food security, but few studies are targeted toward its characterization and consequent valorization and preservation. The objective of this study was to evaluate the potential of the Peruvian Andean maize race Cabanita with respect to its bioactive profiles (free and bound phenolic and carotenoid composition), physical characteristics, and in vitro antioxidant properties. Maize landraces with variable kernel pigmentation were collected from two provinces (Caylloma and Castilla) within the Arequipa region (among ten Andean sites) and the phytochemical profile was evaluated by Ultra High-Performance Liquid Chromatography with diode array detector (UHPLC-DAD). All maize samples were important sources of phenolic compounds mainly soluble p-coumaric and ferulic acid derivatives whereas anthocyanins were only detected in maize with partially red pigmented kernels. Major phenolic compounds in the bound phenolic fractions were ferulic acid and its derivatives along with p-coumaric acid. Carotenoid compounds including xanthophylls such as lutein, lutein isomers, and zeaxanthin were only detected in orange and white-yellow pigmented maize and are reported for the first time in Peruvian landraces. The multivariate analysis using Principal Components Analysis (PCA) revealed low variability of all data which may indicate a level of similarity among maize samples based on evaluated variables. However, maize grown in Caylloma province showed more homogeneous physical characteristics and higher yield, whereas higher phenolic contents and antioxidant capacity were observed in maize from Castilla. Samples CAY (yellow-pigmented kernel, Castilla) and COM (orange-pigmented kernel, Caylloma) had the highest total phenolic (246.7 mg/100 g dried weight basis, DW) and carotenoid (1.95 µg/g DW) contents among all samples. The variable Andean environmental conditions along with differences in farming practices may play a role and should be confirmed with further studies. Current results provide the metabolomic basis for future research using integrated omics platforms targeted toward the complete characterization of the ethnic-relevant maize race Cabanita.
RESUMEN
Avocado consumption and trade are increasing worldwide, with North America and Europe being the main importing regions. Spain is the major European avocado producer (90% of the production), yet it only supplies 10% of the market. Consequently, more than 90% of the avocados consumed in Europe are imported from overseas, mainly from Chile and Peru. In this work, the Life Cycle Assessment (LCA) impact associated with the transport of two avocado supply chains (short (Spanish) and long (Chilean)) and the effect of the fruit origin and distance of both chains on primary and secondary metabolites from harvest to edible ripeness were evaluated using a gas chromatography-mass spectrometry (GC-MS) and liquid chromatography coupled to diode array detection (LC-DAD) based metabolite analysis. The LCA transport impact of the fresh supply chain from production centers in Chile (Quillota) and Spain (Malaga), and then the distribution to several cities in Europe, suggested road export from Spain to European capitals to have the lowest impact (0.14 to 0.22 kg CO2 eq/kg of avocado). When export from Chile was considered, the option of oceanic freight to European ports closer to final destinations was clearly a better option (0.21 to 0.26 kg CO2 eq/kg) than via the Algeciras port in Spain followed by road transport to final destinations in European capitals (0.34 to 0.43 kg CO2 eq/kg), although the situation could be somewhat different if the avocados are transported from the destination ports in northern Europe to long-distance capitals in other European countries. Fruit origin had a significant impact on avocado primary and secondary metabolites. The conditions of the supply chain itself (10 d in cold storage in regular conditions vs. 30 d cold storage + controlled atmosphere conditions) largely influence the fate of some metabolites that certainly affect the pool of metabolites at edible ripeness. The long-assumed hypothesis that the longer the supply chain the more negative impact on nutritional and functional compounds might not hold in this case, as long as transport conditions are adequate in terms of temperature, atmosphere conditions, and time considering distance from origin to destination.
RESUMEN
Table grapes (Vitis vinifera) are affected by botrytis bunch rot and summer bunch rot, the latter a complex disease caused by Botrytis cinerea, Aspergillus spp., Penicillium expansum and Rhizopus stolonifer. To search for biocontrol alternatives, a new bioproduct composed of Gluconobacter cerinus and Hanseniaspora osmophila, a consortium called PUCV-VBL, was developed for the control of fungal rots in table grapes. Since this consortium presents new biocontrol species, the effect of their VOCs (volatile organic compounds) was evaluated under in vitro and in vivo conditions. The VOCs produced by the PUCV-VBL consortium showed the highest mycelial inhibition against Botrytis cinerea (86%). Furthermore, H. osmophila was able to inhibit sporulation of A. tubingensis and P. expansum. VOCs' effect in vivo was evaluated using berries from Red Globe, Thompson Seedless and Crimson Seedless grapes cultivars, demonstrating a mycelial inhibition by VOCs greater than 70% for all evaluated fungal species. The VOC identification of the PUCV-VBL consortium was analyzed by solid-phase microextraction coupled to gas chromatography-mass spectrometry (SPME-GCMS). A total 26 compounds were identified, including 1-butanol 3-methyl, propanoic acid ethyl ester, ethyl acetate, phenylethyl alcohol, isobutyl acetate and hexanoic acid ethyl ester. Our results show that VOCs are an important mode of action of the PUCV-VBL biological consortium.
RESUMEN
Purple corn (Zea mays L.) is native to the Andean region, but limited research has been performed about the potential metabolic variability when grown under Andean environmental conditions. This study was aimed at evaluating the phenolic and primary polar metabolites composition of purple corn (kernels and cobs) grown at two Peruvian Andean locations (lowland and highland) using targeted UHPLC (ultra-high-performance liquid chromatography) and untargeted GC-MS (gas chromatography mass spectrometry) metabolomic platforms, respectively. Changes in the physical characteristics and the in vitro bioactivity were also determined. Purple corn from the highland zone showed higher contents of ash, crude fiber, total phenolic contents, DPPH (2,2-diphenyl-1-picrylhydrazyl) antioxidant capacity, and α-amylase inhibitory activity in kernels, whereas increased levels of flavonoids (anthocyanins and quercetin derivatives) and ABTS [2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)] antioxidant capacity were observed in cobs in comparison to lowland samples. No effect of the Andean location was found on the α-glucosidase inhibitory activity relevant for hyperglycemia management, while yield-linked physical characteristics were high in purple corn grown at the lowland zone. Polar primary metabolites related to the carbohydrate (monosaccharides, sucrose, and d-sorbitol), amino acid (valine and alanine), and tricarboxylic acid cycle (succinic, fumaric, and aconitic acid) metabolism were higher in highland purple corn (cob and kernel) likely due to abiotic stress factors from the highland environment. This study provides the foundation for further breeding improvements at Andean locations.
RESUMEN
Surface pitting is a serious postharvest physiological disorder in sweet cherries that is observed as skin depressions developed days after bruising. This work aims to compare two cultivars displaying different pitting susceptibilities ('Kordia': relatively resistant; 'Sweetheart': relatively susceptible) using metabolomics profiling and cell wall sugar characterization at different developmental stages and during postharvest storage. Kordia was significantly firmer than Sweetheart, with 1.4-fold more alcohol-insoluble residues (AIRs). A significant correlation was observed between AIRs and deformation, indicating that the highest yields of cell wall material are positively correlated with the resistance to rupture. Additionally, free d-galacturonic acid was higher in pitted Sweetheart samples, likely indicating greater pectin degradation in this susceptible cultivar. Higher contents of the p-coumaric acid derivatives L-5-oxoproline and d-galactose in Sweetheart cherries were found. The metabolic changes during storage and cell wall composition could influence the susceptibility to surface pitting.
Asunto(s)
Pared Celular/metabolismo , Conservación de Alimentos , Prunus avium/metabolismo , Carbohidratos/análisis , Metabolómica , Fenoles/metabolismo , Propiedades de SuperficieRESUMEN
Peaches and nectarines [Prunus persica (L.) Batsch] are among the most exported fresh fruit from Chile to the Northern Hemisphere. Fruit acceptance by final consumers is defined by quality parameters such as the size, weight, taste, aroma, color, and juiciness of the fruit. In peaches and nectarines, the balance between soluble sugars present in the mesocarp and the predominant organic acids determines the taste. Biomass production and metabolite accumulation by fruits occur during the different developmental stages and depend on photosynthesis and carbon export by source leaves. Carbon supply to fruit can be potentiated through the field practice of thinning (removal of flowers and young fruit), leading to a change in the source-sink balance favoring fruit development. Thinning leads to fruit with increased size, but it is not known how this practice could influence fruit quality in terms of individual metabolite composition. In this work, we analyzed soluble metabolite profiles of nectarine fruit cv "Magique" at different developmental stages and from trees subjected to different thinning treatments. Mesocarp metabolites were analyzed throughout fruit development until harvest during two consecutive harvest seasons. Major polar compounds such as soluble sugars, amino acids, organic acids, and some secondary metabolites were measured by quantitative 1H-NMR profiling in the first season and GC-MS profiling in the second season. In addition, harvest and ripening quality parameters such as fruit weight, firmness, and acidity were determined. Our results indicated that thinning (i.e., source-sink imbalance) mainly affects fruit metabolic composition at early developmental stages. Metabolomic data revealed that sugar, organic acid, and phenylpropanoid pathway intermediates at early stages of development can be used to segregate fruits impacted by the change in source-sink balance. In conclusion, we suggest that the metabolite profile at early stages of development could be a metabolic predictor of final fruit quality in nectarines.
RESUMEN
Avocado (Persea americana Mill) is rich in a variety of essential nutrients and phytochemicals; thus, consumption has drastically increased in the last 10 years. Avocado unlike other fruit is characterized by oil accumulation during growth and development and presents a unique carbohydrate pattern. There are few previous and current studies related to primary metabolism. The fruit is also quite unique since it contains large amounts of C7 sugars (mannoheptulose and perseitol) acting as transportable and storage sugars and as potential regulators of fruit ripening. These C7 sugars play a central role during fruit growth and development, but still confirmation is needed regarding the biosynthetic routes and the physiological function during growth and development of avocado fruit. Relatively recent transcriptome studies on avocado mesocarp during development and ripening have revealed that most of the oil is synthesized during early stages of development and that oil synthesis is halted when the fruit is harvested (pre-climacteric stage). Most of the oil is accumulated in the form of triacylglycerol (TAG) representing 60-70% in dry basis of the mesocarp tissue. During early stages of fruit development, high expression of transcripts related to fatty acid and TAG biosynthesis has been reported and downregulation of same genes in more advanced stages but without cessation of the process until harvest. The increased expression of fatty acid key genes and regulators such as PaWRI1, PaACP4-2, and PapPK-ß-1 has also been reported to be consistent with the total fatty acid increase and fatty acid composition during avocado fruit development. During postharvest, there is minimal change in the fatty acid composition of the fruit. Almost inexistent information regarding the role of organic acid and amino acid metabolism during growth, development, and ripening of avocado is available. Cell wall metabolism understanding in avocado, even though crucial in terms of fruit quality, still presents severe gaps regarding the interactions between cell wall remodeling, fruit development, and postharvest modifications.
RESUMEN
Ripening heterogeneity of Hass avocados results in inconsistent quality fruit delivered to the triggered and ready to eat markets. This research aimed to understand the effect of a heat shock (HS) prior to controlled atmosphere (CA) storage on the reduction of ripening heterogeneity. HS prior to CA storage reduces more drastically the ripening heterogeneity in middle season fruit. Via correlation network analysis we show the different metabolomics networks between HS and CA. High throughput proteomics revealed 135 differentially expressed proteins unique to middle season fruit triggered by HS. Further integration of metabolomics and proteomics data revealed that HS reduced the glycolytic throughput and induced protein degradation to deliver energy for the alternative ripening pathways. l-isoleucine, l-valine, l-aspartic and ubiquitin carboxyl-terminal hydrolase involved in protein degradation were positively correlated to HS samples. Our study provides new insights into the effectiveness of HS in synchronizing ripening of Hass avocados.
Asunto(s)
Frutas/crecimiento & desarrollo , Calor , Metabolómica , Persea/crecimiento & desarrollo , Proteómica , Metabolismo Energético , Almacenamiento de Alimentos , Frutas/química , Frutas/metabolismo , Glucólisis , Metabolómica/métodos , Proteínas de Plantas/análisis , Proteínas de Plantas/metabolismo , Proteómica/métodos , Estaciones del AñoRESUMEN
Firm berries are highly appreciated by table grape consumers. Cell wall composition is one of the main factors influencing the firmness of table grape berries. Nevertheless, the biological factors driving changes in berry firmness remain unclear. In the present work, we evaluated the firmness of berries of Vitis vinifera cv. Thompson Seedless. We selected two orchards displaying contrasting berry firmness and evaluated polar metabolites and cell wall composition. Our results suggest that berries from the soft orchard exhibited a higher accumulation of sugars at veraison whereas berries from the hard orchard accumulated the same sugars at harvest plus a higher amount of glucose monosaccharide at the cell wall. Thus, this study opens new insights about a connection between metabolic and cell wall changes with fruit firmness in a table grape variety, suggesting that it is possible to use metabolomic tools to identify metabolic biomarkers associated with table grape berry firmness.
Asunto(s)
Pared Celular/química , Vitis/química , Frutas , MetabolómicaRESUMEN
Walnuts (Juglans regia L.) are well known for their flavour, nutritional and health properties. The light colour of walnuts is a quality attribute that leads to consumer preference. The aim of this study was to correlate attributes such as colour and antioxidant capacity with the precursors of primary and secondary metabolism. Two growing areas and four different colours of walnuts cv. Chandler from the central region of Chile were evaluated. Walnuts grown in the zone with Andes Mountains influence showed higher (p<0.05) sugar and unsaturated fatty acid contents, which could be attributed to lower minimum temperatures during seed filling. Extra light walnuts had higher (p<0.05) total phenolic compounds, antioxidant capacity and arbutin levels than amber walnuts. To the best of our knowledge, this is the first time that arbutin has been reported in walnuts and could provide the first insight into how enzymatic browning is prevented in the Chandler cultivar.
Asunto(s)
Color , Juglans , Chile , Nueces , Metabolismo SecundarioRESUMEN
Pouteria lucuma is an Andean fruit from pre-Incas' times highly appreciated due to its characteristic flavor and taste in its homeland. We characterized the primary (e.g., sugars and organic acids), and secondary (e.g., phenolics and carotenoids) and in vitro antioxidant and antihyperglycemic properties of Rosalia, Montero and Leiva 1 lucuma biotypes. Significant differences were found in these metabolites and functional properties related to biotype and ripeness stage. Results showed significant amounts of sugars (119.4-344 mg total sugars g(-1)DW) and organic acids (44.4-30.0 mg g(-1)DW) and functional associated compounds such as ascorbic acid (0.35-1.07 mg g(-1)DW), total phenolics (0.7-61.6 mg GAE g(-1)DW) and total carotenoids (0.22-0.50 mg ß-carotene g(-1)DW). Important in vitro antioxidant and antihyperglycemic properties were found and provide the base for the standardization of lucuma harvest and postharvest focused not only on the enhancement of sensory but functional properties.
Asunto(s)
Antioxidantes/farmacología , Hipoglucemiantes/farmacología , Extractos Vegetales/farmacología , Pouteria/metabolismo , Carotenoides/análisis , Frutas/química , Fenoles/análisis , Pouteria/química , alfa-Amilasas/antagonistas & inhibidoresRESUMEN
Thirty-three Chilean corn accessions were screened for the first time regarding their phenolic profiles, total phenolic contents (TPC), antioxidant capacity (DPPH and ABTS), and in vitro inhibition against key enzymes relevant for hyperglycemia (α-amylase and α-glucosidase) and hypertension (angiotensin I-converting enzyme, ACE-I) in both free and cell wall-bound fractions. TPC varied from 132.2 to 262.5 mg of gallic acid equivalents/100g dry weight (DW), and around 88% of TPC and antioxidant capacity were found in the bound form. Vanillin, vanillic, protocatechuic, ferulic, and p-coumaric acids were detected by HPLC in free fractions, whereas ferulic and p-coumaric acids were found in the bound form. Pisankalla accession (red kernel) had the highest ferulic acid content (269.5 mg/100g DW). No α-amylase and ACE-I inhibition were found; however, all free fractions inhibited α-glucosidase (10.8-72.5%). Principal component analysis revealed that darker samples (free fraction) showed higher TPC and antioxidant capacity, while α-glucosidase inhibition was related to yellow-colored samples.
Asunto(s)
Antihipertensivos/química , Antioxidantes/química , Inhibidores Enzimáticos/química , Hipoglucemiantes/química , Fenoles/química , Extractos Vegetales/administración & dosificación , Zea mays/química , Inhibidores de la Enzima Convertidora de Angiotensina/química , Chile , Inhibidores de Glicósido Hidrolasas , alfa-Amilasas/antagonistas & inhibidoresRESUMEN
Abstract: to compare the presurgical and immediate postsurgical quality of life in Chilean patients with orthognathic surgery. Material and Methods: Cohort study. The study included 30 patients (mean age 20.73, 53.33 percent male) who underwent orthognathic surgery primarily for severe skeletal abnormalities, (17 surgeries, 56.7 percent) and moderate skeletal abnormalities (12 surgeries, 40 percent), from three Chilean hospitals between February and June 2016. Patients were asked to answer the World Health Organization quality of life Bref version questionnaire (WHOQOL-BREF) validated in Spanish to measure quality of life (QoL) two weeks before and three months after the surgery. Scores for general QoL and for every domain of QoL were described. Variations in the scores of general QoL were analyzed according to sex and severity of orofacial malformation (mild, moderate or severe) (t-test p<0.05; STATA 10.0). Results: The average score for QoL according to the WHOQOL-BREF scale was 76.43 +/- 13.83 before surgery and 90.5 +/-7.18 three months after surgery (p<0.001). Statistically significant differences according to sex and type of orofacial malformation were found (p<0.01). An increase in the score in all the domains of the WHOQOOL-BREF scale was observed. Conclusion: Orthognathic surgery significantly improved QoL scores in Chilean patients according to the WHOQOL-BREF scale.
Resumen: comparar la calidad de vida pre y postquirúrgica inmediata en pacientes chilenos sometidos a cirugía ortognática. Materiales y método: Estudio de cohorte. Participaron 30 pacientes (edad promedio 20.73, 53.33 por ciento hombres) sometidos a cirugía ortognática, principalmente por anomalía esqueletal severa (17 cirugías, 56.7 por ciento) y moderada (12 cirugías, 40 por ciento) de tres hospitales chilenos entre los meses de febrero y junio del 2016. Cada paciente respondió el cuestionario autocumplido World Health Organization Quality of Life Bref version (WHOQOL-BREF) validado en español para el registro de la calidad de vida (CV) en cirugía ortognática, previo a la cirugía y luego de tres meses postoperatorio. Se describieron los puntajes de CV general y por dominios, se analizaron los cambios en la CV general según sexo y severidad de la malformación orofacial (leve, moderada o severa) (t-test p<0.05; STATA 10.0). Resultados: El promedio del puntaje de CV fue 76.43 +/- 13.83 antes de cirugía y 90.5 +/- 7.18 después de tres meses de cirugía (p<0.001). Las diferencias fueron estadísticamente significativas según sexo y tipo de malformación orofacial (p<0.01). Se observó un aumento de los valores en todos los dominios de la encuesta WHOQOOL- BREF. Conclusión: La cirugía ortognática mejoró significativamente los puntajes de CV en pacientes chilenos según la escala WHOQOL-BREF.