Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Materials (Basel) ; 16(2)2023 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-36676203

RESUMEN

Single-wall carbon nanotubes (SWCNTs) are promising materials for electronic applications, such as transparent electrodes and thin-film transistors. However, the dispersion of isolated SWCNTs into solvents remains an important issue for their practical applications. SWCNTs are commonly dispersed in solvents via ultrasonication. However, ultrasonication damages SWCNTs, forming defects and cutting them into short pieces, which significantly degrade their electrical and mechanical properties. Herein, we demonstrate a novel approach toward the large-scale dispersion of long and isolated SWCNTs by using hydrodynamic cavitation. Considering the results of atomic force microscopy and dynamic light-scattering measurements, the average length of the SWCNTs dispersed via the hydrodynamic cavitation method is larger than that of the SWCNTs dispersed by using an ultrasonic homogenizer.

2.
Nano Lett ; 9(4): 1497-500, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19243112

RESUMEN

We report a rapid and scalable method for the separation of metallic and semiconducting single-wall carbon nanotubes (SWCNTs); the separation is performed by the selective adsorption of semiconducting SWCNTs on agarose gel. The most effective separation was realized by a simple procedure in which a piece of gel containing SWCNTs and sodium dodecyl sulfate was frozen, thawed, and squeezed. This process affords a solution containing 70% pure metallic SWCNTs and leaves a gel containing 95% pure semiconducting SWCNTs. Field-effect transistors constructed from the separated semiconducting SWCNTs have been demonstrated to function without any electrical breakdown.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA