Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
EMBO J ; 39(8): e104120, 2020 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-32128853

RESUMEN

Protein prenylation is essential for many cellular processes including signal transduction, cytoskeletal reorganization, and membrane trafficking. Here, we identify a novel type of protein prenyltransferase, which we named geranylgeranyltransferase type-III (GGTase-III). GGTase-III consists of prenyltransferase alpha subunit repeat containing 1 (PTAR1) and the ß subunit of RabGGTase. Using a biotinylated geranylgeranyl analogue, we identified the Golgi SNARE protein Ykt6 as a substrate of GGTase-III. GGTase-III transfers a geranylgeranyl group to mono-farnesylated Ykt6, generating doubly prenylated Ykt6. The crystal structure of GGTase-III in complex with Ykt6 provides structural basis for Ykt6 double prenylation. In GGTase-III-deficient cells, Ykt6 remained in a singly prenylated form, and the Golgi SNARE complex assembly was severely impaired. Consequently, the Golgi apparatus was structurally disorganized, and intra-Golgi protein trafficking was delayed. Our findings reveal a fourth type of protein prenyltransferase that generates geranylgeranyl-farnesyl Ykt6. Double prenylation of Ykt6 is essential for the structural and functional organization of the Golgi apparatus.


Asunto(s)
Transferasas Alquil y Aril/metabolismo , Dimetilaliltranstransferasa/metabolismo , Proteínas R-SNARE/metabolismo , Proteínas SNARE/metabolismo , Transferasas Alquil y Aril/química , Transferasas Alquil y Aril/genética , Animales , Dimetilaliltranstransferasa/química , Dimetilaliltranstransferasa/genética , Aparato de Golgi/metabolismo , Humanos , Masculino , Fusión de Membrana , Unión Proteica , Multimerización de Proteína , Prenilación de Proteína , Transporte de Proteínas , Proteínas R-SNARE/genética , Ratas , Ratas Wistar
2.
EMBO J ; 39(2): e102586, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31802527

RESUMEN

ER-phagy, the selective autophagy of endoplasmic reticulum (ER), safeguards organelle homeostasis by eliminating misfolded proteins and regulating ER size. ER-phagy can occur by macroautophagic and microautophagic mechanisms. While dedicated machinery for macro-ER-phagy has been discovered, the molecules and mechanisms mediating micro-ER-phagy remain unknown. Here, we first show that micro-ER-phagy in yeast involves the conversion of stacked cisternal ER into multilamellar ER whorls during microautophagic uptake into lysosomes. Second, we identify the conserved Nem1-Spo7 phosphatase complex and the ESCRT machinery as key components for micro-ER-phagy. Third, we demonstrate that macro- and micro-ER-phagy are parallel pathways with distinct molecular requirements. Finally, we provide evidence that the ESCRT machinery directly functions in scission of the lysosomal membrane to complete the microautophagic uptake of ER. These findings establish a framework for a mechanistic understanding of micro-ER-phagy and, thus, a comprehensive appreciation of the role of autophagy in ER homeostasis.


Asunto(s)
Estrés del Retículo Endoplásmico/fisiología , Retículo Endoplásmico/fisiología , Complejos de Clasificación Endosomal Requeridos para el Transporte , Membranas Intracelulares/metabolismo , Microautofagia , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Homeostasis , Proteínas de la Membrana/metabolismo , Proteínas Nucleares/metabolismo , Saccharomyces cerevisiae/metabolismo
3.
J Cell Sci ; 135(5)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35217856

RESUMEN

Lipid droplets (LDs) in the cytoplasm are formed in the endoplasmic reticulum (ER) and are connected with various organelles, both structurally and functionally. This is in contrast to LDs in the nucleus, which are separated from organelles in the cytoplasm. How nuclear lipid droplets form and what function they have were not known for many years. Recent results have revealed that nuclear LDs in hepatocytes are derived from lipoprotein precursors in the ER lumen, whereas those in non-hepatocytes and budding yeast newly form in the inner nuclear membrane. Although nuclear LDs are far fewer in number than cytoplasmic LDs, the unique location appears to bestow upon them specific functions, which are potentially linked to nuclear biology. This Review will provide an overview of our current understanding of nuclear LDs, discuss how they are different from cytoplasmic LDs and highlight knowledge gaps that need to be filled in future studies.


Asunto(s)
Gotas Lipídicas , Hermanos , Núcleo Celular/metabolismo , Retículo Endoplásmico/metabolismo , Humanos , Gotas Lipídicas/metabolismo , Metabolismo de los Lípidos , Membrana Nuclear/metabolismo
4.
J Cell Sci ; 135(5)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-34000034

RESUMEN

Membrane phase separation to form micron-scale domains of lipids and proteins occurs in artificial membranes; however, a similar large-scale phase separation has not been reported in the plasma membrane of the living cells. We show here that a stable micron-scale protein-depleted region is generated in the plasma membrane of yeast mutants lacking phosphatidylserine at high temperatures. We named this region the 'void zone'. Transmembrane proteins and certain peripheral membrane proteins and phospholipids are excluded from the void zone. The void zone is rich in ergosterol, and requires ergosterol and sphingolipids for its formation. Such properties are also found in the cholesterol-enriched domains of phase-separated artificial membranes, but the void zone is a novel membrane domain that requires energy and various cellular functions for its formation. The formation of the void zone indicates that the plasma membrane in living cells has the potential to undergo phase separation with certain lipid compositions. We also found that void zones were frequently in contact with vacuoles, in which a membrane domain was also formed at the contact site.


Asunto(s)
Fosfatidilserinas , Saccharomyces cerevisiae , Membrana Celular , Microdominios de Membrana , Fosfolípidos , Saccharomyces cerevisiae/genética , Esfingolípidos
5.
Semin Cell Dev Biol ; 108: 47-54, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32169402

RESUMEN

Lipid droplets (LDs) are not an inert storage of excessive lipids, but play various roles in cellular lipid metabolism. Autophagy involves several mechanisms for the degradation of cellular components, and is related to many aspects of lipid metabolism. LD and autophagic membranes often distribute in proximity, but their relationship is complex. LDs can be degraded by autophagy, but LDs are also generated as a result of autophagy or support the execution of autophagy. Moreover, several proteins crucial for autophagy were shown to affect different aspects of LD formation. This article aims to categorize this multifaceted and seemingly entangled LD-autophagy relationship and to discuss unresolved issues.


Asunto(s)
Autofagia , Gotas Lipídicas/metabolismo , Animales , Humanos , Metabolismo de los Lípidos , Modelos Biológicos , Proteínas/metabolismo
6.
EMBO J ; 37(21)2018 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-30237312

RESUMEN

PGAM5, a mitochondrial protein phosphatase that is genetically and biochemically linked to PINK1, facilitates mitochondrial division by dephosphorylating the mitochondrial fission factor Drp1. At the onset of mitophagy, PGAM5 is cleaved by PARL, a rhomboid protease that degrades PINK1 in healthy cells, and the cleaved form facilitates the engulfment of damaged mitochondria by autophagosomes by dephosphorylating the mitophagy receptor FUNDC1. Here, we show that the function and localization of PGAM5 are regulated by syntaxin 17 (Stx17), a mitochondria-associated membrane/mitochondria protein implicated in mitochondrial dynamics in fed cells and autophagy in starved cells. In healthy cells, loss of Stx17 causes PGAM5 aggregation within mitochondria and thereby failure of the dephosphorylation of Drp1, leading to mitochondrial elongation. In Parkin-mediated mitophagy, Stx17 is prerequisite for PGAM5 to interact with FUNDC1. Our results reveal that the Stx17-PGAM5 axis plays pivotal roles in mitochondrial division and PINK1/Parkin-mediated mitophagy.


Asunto(s)
Dinámicas Mitocondriales , Proteínas Mitocondriales/metabolismo , Mitofagia , Fosfoproteínas Fosfatasas/metabolismo , Proteínas Qa-SNARE/metabolismo , Transducción de Señal , Autofagosomas/metabolismo , Dinaminas , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Células HeLa , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Metaloproteasas/genética , Metaloproteasas/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Mitocondriales/genética , Fosfoproteínas Fosfatasas/genética , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Proteolisis , Proteínas Qa-SNARE/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
7.
Proc Natl Acad Sci U S A ; 116(27): 13368-13373, 2019 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-31217287

RESUMEN

TMEM16K, a membrane protein carrying 10 transmembrane regions, has phospholipid scramblase activity. TMEM16K is localized to intracellular membranes, but whether it actually scrambles phospholipids inside cells has not been demonstrated, due to technical difficulties in studying intracellular lipid distributions. Here, we developed a freeze-fracture electron microscopy method that enabled us to determine the phosphatidylserine (PtdSer) distribution in the individual leaflets of cellular membranes. Using this method, we found that the endoplasmic reticulum (ER) of mammalian cells harbored abundant PtdSer in its cytoplasmic leaflet and much less in the luminal leaflet, whereas the outer and inner nuclear membranes (NMs) had equivalent amounts of PtdSer in both leaflets. The ER and NMs of budding yeast also harbored PtdSer in their cytoplasmic leaflet, but asymmetrical distribution in the ER was not observed. Treating mouse embryonic fibroblasts with the Ca2+ ionophore A23187 compromised the cytoplasmic leaflet-dominant PtdSer asymmetry in the ER and increased PtdSer in the NMs, especially in the nucleoplasmic leaflet of the inner NM. This Ca2+-induced PtdSer redistribution was not observed in TMEM16K-null fibroblasts, but was recovered in these cells by reexpressing TMEM16K. These results indicate that, similar to the plasma membrane, PtdSer in the ER of mammalian cells is predominantly localized to the cytoplasmic leaflet, and that TMEM16K directly or indirectly mediates Ca2+-dependent phospholipid scrambling in the ER.


Asunto(s)
Anoctaminas/metabolismo , Retículo Endoplásmico/metabolismo , Fosfatidilserinas/metabolismo , Animales , Calcimicina/farmacología , Calcio/metabolismo , Ionóforos de Calcio/farmacología , Fibroblastos/metabolismo , Técnicas de Inactivación de Genes , Membranas Intracelulares/metabolismo , Ratones , Membrana Nuclear/metabolismo
8.
Proc Natl Acad Sci U S A ; 116(51): 26020-26028, 2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-31776261

RESUMEN

The voltage-sensing phosphatase (VSP) is a unique protein that shows voltage-dependent phosphoinositide phosphatase activity. Here we report that VSP is activated in mice sperm flagellum and generates a unique subcellular distribution pattern of PtdIns(4,5)P2 Sperm from VSP-/- mice show more Ca2+ influx upon capacitation than VSP+/- mice and abnormal circular motion. VSP-deficient sperm showed enhanced activity of Slo3, a PtdIns(4,5)P2-sensitive K+ channel, which selectively localizes to the principal piece of the flagellum and indirectly enhances Ca2+ influx. Most interestingly, freeze-fracture electron microscopy analysis indicates that normal sperm have much less PtdIns(4,5)P2 in the principal piece than in the midpiece of the flagellum, and this polarized PtdIns(4,5)P2 distribution disappeared in VSP-deficient sperm. Thus, VSP appears to optimize PtdIns(4,5)P2 distribution of the principal piece. These results imply that flagellar PtdIns(4,5)P2 distribution plays important roles in ion channel regulation as well as sperm motility.


Asunto(s)
Canales Iónicos/metabolismo , Fosfatidilinositol 4,5-Difosfato/química , Fosfatidilinositol 4,5-Difosfato/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Motilidad Espermática/fisiología , Animales , Canales de Calcio/metabolismo , Flagelos/metabolismo , Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Masculino , Potenciales de la Membrana/fisiología , Ratones , Ratones Noqueados , Monoéster Fosfórico Hidrolasas/genética , Cola del Espermatozoide/metabolismo , Espermatozoides/metabolismo
9.
J Cell Sci ; 131(8)2018 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-29507116

RESUMEN

This paper describes a novel type of nuclear structure - nuclear lipid islets (NLIs). They are of 40-100 nm with a lipidic interior, and phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] molecules comprise a significant part of their surface. Most of NLIs have RNA at the periphery. Consistent with that, RNA is required for their integrity. The NLI periphery is associated with Pol II transcription machinery, including the largest Pol II subunit, transcription factors and NM1 (also known as NMI). The PtdIns(4,5)P2-NM1 interaction is important for Pol II transcription, since NM1 knockdown reduces the Pol II transcription level, and the overexpression of wild-type NM1 [but not NM1 mutated in the PtdIns(4,5)P2-binding site] rescues the transcription. Importantly, Pol II transcription is dependent on NLI integrity, because an enzymatic reduction of the PtdIns(4,5)P2 level results in a decrease of the Pol II transcription level. Furthermore, about half of nascent transcripts localise to NLIs, and transcriptionally active transgene loci preferentially colocalise with NLIs. We hypothesize that NLIs serve as a structural platform that facilitates the formation of Pol II transcription factories, thus participating in the formation of nuclear architecture competent for transcription.


Asunto(s)
Núcleo Celular/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , ARN Polimerasa II/metabolismo , Factores de Transcripción/metabolismo , Humanos
10.
Bioconjug Chem ; 31(6): 1611-1615, 2020 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-32378884

RESUMEN

Membrane curvature plays a pivotal role in cellular life, including cellular uptake and membrane trafficking. The modulation of membrane curvature provides a novel means of manipulating cellular events. In this report, we show that a nine-residue amphiphilic peptide (R6W3) stimulates endocytic uptake by inducing membrane curvature. Curvature formation on cell membranes was confirmed by observing the cellular distribution of the curvature-sensing protein amphiphysin fused with a yellow fluorescent protein (Amp-YFP). Dot-like signals of Amp-YFP were visible following the addition of R6W3, suggesting curvature formation in cell membranes, leading to endocytic cup and vesicle formation. The promotion of endocytic uptake was confirmed using the endocytosis marker polydextran. Treatment of cells with R6W3 yielded a 4-fold dextran uptake compared with untreated cells. The amphiphilic helical structure of R6W3 was also crucial for R6W3-stimulated endocytic uptake.


Asunto(s)
Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Endocitosis/efectos de los fármacos , Interacciones Hidrofóbicas e Hidrofílicas , Péptidos/química , Péptidos/farmacología , Proteínas Bacterianas/metabolismo , Células HeLa , Humanos , Proteínas Luminiscentes/metabolismo
11.
Traffic ; 17(2): 154-67, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26563567

RESUMEN

Phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2 ) has critical functions in endosomes and lysosomes. We developed a method to define nanoscale distribution of PtdIns(3,5)P2 using freeze-fracture electron microscopy. GST-ATG18-4×FLAG was used to label PtdIns(3,5)P2 and its binding to phosphatidylinositol 3-phosphate (PtdIns(3)P) was blocked by an excess of the p40(phox) PX domain. In yeast exposed to hyperosmotic stress, PtdIns(3,5)P2 was concentrated in intramembrane particle (IMP)-deficient domains in the vacuolar membrane, which made close contact with adjacent membranes. The IMP-deficient domain was also enriched with PtdIns(3)P, but was deficient in Vph1p, a liquid-disordered domain marker. In yeast lacking either PtdIns(3,5)P2 or its effector, Atg18p, the IMP-deficient, PtdIns(3)P-rich membranes were folded tightly to make abnormal tubular structures, thus showing where the vacuolar fragmentation process is arrested when PtdIns(3,5)P2 metabolism is defective. In HeLa cells, PtdIns(3,5)P2 was significantly enriched in the vesicular domain of RAB5- and RAB7-positive endosome/lysosomes of the tubulo-vesicular morphology. This biased distribution of PtdIns(3,5)P2 was also observed using fluorescence microscopy, which further showed enrichment of a retromer component, VPS35, in the tubular domain. This is the first report to show segregation of PtdIns(3,5)P2 -rich and -deficient domains in endosome/lysosomes, which should be important for endosome/lysosome functionality.


Asunto(s)
Membrana Celular/metabolismo , Endosomas/metabolismo , Lisosomas/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Animales , Células COS , Línea Celular , Línea Celular Tumoral , Chlorocebus aethiops , Células HeLa , Humanos , Estructura Terciaria de Proteína , Vacuolas/metabolismo , Levaduras/metabolismo
12.
J Lipid Res ; 59(5): 805-819, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29549094

RESUMEN

Lipid droplets (LDs) are ubiquitous organelles that contain neutral lipids and are surrounded by a phospholipid monolayer. How proteins specifically localize to the phospholipid monolayer of the LD surface has been a matter of extensive investigations. In the present study, we show that syntaxin 17 (Stx17), a soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) protein whose expression in the liver is regulated by diet, participates in LD biogenesis by regulating the distribution of acyl-CoA synthetase (ACSL)3, a key enzyme for LD biogenesis that redistributes from the endoplasmic reticulum (ER) to LDs during LD formation. Stx17 interacts with ACSL3, but not with LD formation-unrelated ACSL1 or ACSL4, through its SNARE domain. The interaction occurs at the ER-mitochondria interface and depends on the active site occupancy of ACSL3. Depletion of Stx17 impairs ACSL3 redistribution to nascent LDs. The defect in LD maturation due to Stx17 knockdown can be compensated for by ACSL3 overexpression, suggesting that Stx17 increases the efficiency of ACSL3 redistribution to LDs. Moreover, we show that the interaction between Stx17 and ACSL3 during LD maturation may be regulated by synaptosomal-associated protein of 23 kDa.


Asunto(s)
Coenzima A Ligasas/metabolismo , Gotas Lipídicas/metabolismo , Proteínas Qa-SNARE/metabolismo , Células 3T3-L1 , Animales , Células Cultivadas , Femenino , Células HEK293 , Células Hep G2 , Humanos , Ratones
13.
Biochem Soc Trans ; 46(5): 1047-1054, 2018 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-30242116

RESUMEN

The membrane raft has been a focus of intensive research for the past two decades. Liquid-ordered domains form in artificial liposomes containing sterol and saturated lipids, but their presence in living cell membranes has been controversial. The yeast vacuole is exceptional in that micron-sized raft-like domains form in the stationary phase and under several other conditions. The sterol content of the vacuole in the log phase is much lower than that of liposomes showing liquid-ordered domains, suggesting that sterols may need to be supplied to the vacuole for the raft-like domain formation. We will discuss how lipids and lipid domains are organized in the vacuolar membrane and examine whether evidence is strong enough to conclude that the observed micron-sized domains are rafts.


Asunto(s)
Lípidos de la Membrana/química , Microdominios de Membrana/química , Saccharomyces cerevisiae/química , Esteroles/química , Vacuolas/química , Transporte Biológico , Membrana Celular/química , Colesterol/química , Liposomas/química , Ósmosis , Dominios Proteicos , Estrés Fisiológico
14.
Histochem Cell Biol ; 148(3): 219-227, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28421320

RESUMEN

Ubiquitin regulatory X domain-containing protein 8 (UBXD8) is engaged in the degradation of lipidated apolipoprotein B in hepatocytes. We previously showed that hepatocyte-specific UBXD8-deficient mice (U8-HKO) fed a moderately high-fat diet (31 kcal % fat) showed periportal macrovesicular steatosis along with a decrease in very low-density lipoprotein secretion, but did not develop fibrosis. In the present study, we examined whether U8-HKO mice show NASH-like phenotypes when fed a very high-fat diet (60 kcal % fat). U8-HKO mice and their age-matched littermates (control) were fed with two NASH model diets: choline-sufficient very high-fat diet and choline-deficient very high-fat diet. After being fed a very high-fat diet for 2 weeks, U8-HKO mice showed hepatic fibrosis in a significantly wider area than in the control. Fibrosis in U8-HKO mouse liver was further enhanced under a very high-fat diet depleted of choline (the liver surface was lumpy). Concomitant administration of an angiotensin 2 type 1 receptor blocker reduced the hepatic fibrosis caused by the very high-fat diet, suggesting the existence of inflammation. Carbon tetrachloride also induced hepatic fibrosis but the severity was comparable in the control and U8-HKO mice. In conjunction with our previous finding, the results indicate that although UBXD8 functionality can be largely compensated in the normal setting, it is crucial to sustain VLDL secretion when exposed to a dietary challenge of high fat. U8-HKO mice that develop fibrosis within 2 weeks of high-fat feeding can be used as a model to study NAFLD/NASH disease progression.


Asunto(s)
Proteínas Sanguíneas/deficiencia , Modelos Animales de Enfermedad , Hepatocitos/metabolismo , Cirrosis Hepática/metabolismo , Proteínas de la Membrana/deficiencia , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Animales , Proteínas Sanguíneas/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados
15.
Adv Exp Med Biol ; 997: 111-120, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28815525

RESUMEN

Lipid droplets (LDs) are often found adjacent to the endoplasmic reticulum (ER). The ER-LD association may appear morphologically similar to the prototypical membrane contact sites found between the ER and other organelles, but the functional relationship between the ER and LDs is unique in that highly hydrophobic lipid esters are transported between them. This transportation is thought to occur through some form of membrane continuity, but its details are yet to be defined. Lipin, seipin, and FIT proteins, which are located at the ER-LD interface, may be involved in the lipid ester transport and probably play important roles for functional connectivity of the two organelles. More recently, LDs in the nucleus were found to be closely adhered to the inner nuclear membrane, representing a specialized form of the ER-LD association. In this article, we will give an overview of the ER-LD association, which is still filled with many unanswered questions.


Asunto(s)
Proteínas Portadoras/metabolismo , Retículo Endoplásmico/metabolismo , Membranas Intracelulares/metabolismo , Gotas Lipídicas/metabolismo , Lípidos de la Membrana/metabolismo , Transducción de Señal , Animales , Transporte Biológico , Humanos , Microdominios de Membrana/metabolismo , Membrana Nuclear/metabolismo
16.
J Lipid Res ; 57(11): 2005-2014, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27647838

RESUMEN

The 24(S)-hydroxycholesterol (24S-OHC), which plays an important role in maintaining brain cholesterol homeostasis, has been shown to possess neurotoxicity. We have previously reported that 24S-OHC esterification by ACAT1 and the resulting lipid droplet (LD) formation are responsible for 24S-OHC-induced cell death. In the present study, we investigate the functional roles of 24S-OHC esters and LD formation in 24S-OHC-induced cell death, and we identify four long-chain unsaturated fatty acids (oleic acid, linoleic acid, arachidonic acid, and DHA) with which 24S-OHC is esterified in human neuroblastoma SH-SY5Y cells treated with 24S-OHC. Here, we find that cotreatment of cells with 24S-OHC and each of these four unsaturated fatty acids increases prevalence of the corresponding 24S-OHC ester and exacerbates induction of cell death as compared with cell death induced by treatment with 24S-OHC alone. Using electron microscopy, we find in the present study that 24S-OHC induces formation of LD-like structures coupled with enlarged endoplasmic reticulum (ER) lumina, and that these effects are suppressed by treatment with ACAT inhibitor. Collectively, these results illustrate that ACAT1-catalyzed esterification of 24S-OHC with long-chain unsaturated fatty acid followed by formation of atypical LD-like structures at the ER membrane is a critical requirement for 24S-OHC-induced cell death.


Asunto(s)
Acetil-CoA C-Acetiltransferasa/genética , Encéfalo/metabolismo , Hidroxicolesteroles/administración & dosificación , Gotas Lipídicas/metabolismo , Neuronas/metabolismo , Ácido Araquidónico/administración & dosificación , Ácido Araquidónico/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/patología , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Esterificación/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Hidroxicolesteroles/metabolismo , Ácido Linoleico/administración & dosificación , Ácido Linoleico/metabolismo , Gotas Lipídicas/química , Gotas Lipídicas/efectos de los fármacos , Neuroblastoma/metabolismo , Neuronas/patología , Ácido Oléico/administración & dosificación , Ácido Oléico/metabolismo
17.
J Biol Chem ; 290(39): 23464-77, 2015 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-26198636

RESUMEN

Cellular cholesterol homeostasis involves sterol sensing at the endoplasmic reticulum (ER) and sterol export from the plasma membrane (PM). Sterol sensing at the ER requires efficient sterol delivery from the PM; however, the macromolecules that facilitate retrograde sterol transport at the PM have not been identified. ATP-binding cassette transporter A1 (ABCA1) mediates cholesterol and phospholipid export to apolipoprotein A-I for the assembly of high density lipoprotein (HDL). Mutations in ABCA1 cause Tangier disease, a familial HDL deficiency. Several lines of clinical and experimental evidence suggest a second function of ABCA1 in cellular cholesterol homeostasis in addition to mediating cholesterol efflux. Here, we report the unexpected finding that ABCA1 also plays a key role in facilitating retrograde sterol transport from the PM to the ER for sterol sensing. Deficiency in ABCA1 delays sterol esterification at the ER and activates the SREBP-2 cleavage pathway. The intrinsic ATPase activity in ABCA1 is required to facilitate retrograde sterol transport. ABCA1 deficiency causes alternation of PM composition and hampers a clathrin-independent endocytic activity that is required for ER sterol sensing. Our finding identifies ABCA1 as a key macromolecule facilitating bidirectional sterol movement at the PM and shows that ABCA1 controls retrograde sterol transport by modulating a certain clathrin-independent endocytic process.


Asunto(s)
Transportador 1 de Casete de Unión a ATP/metabolismo , Retículo Endoplásmico/metabolismo , Esteroles/metabolismo , Animales , Transporte Biológico , Células Cultivadas , Metabolismo de los Lípidos , Ratones , Proteína 2 de Unión a Elementos Reguladores de Esteroles/metabolismo
18.
Nucleic Acids Res ; 42(2): 1052-64, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24150943

RESUMEN

Rhodococcus opacus strain PD630 (R. opacus PD630), is an oleaginous bacterium, and also is one of few prokaryotic organisms that contain lipid droplets (LDs). LD is an important organelle for lipid storage but also intercellular communication regarding energy metabolism, and yet is a poorly understood cellular organelle. To understand the dynamics of LD using a simple model organism, we conducted a series of comprehensive omics studies of R. opacus PD630 including complete genome, transcriptome and proteome analysis. The genome of R. opacus PD630 encodes 8947 genes that are significantly enriched in the lipid transport, synthesis and metabolic, indicating a super ability of carbon source biosynthesis and catabolism. The comparative transcriptome analysis from three culture conditions revealed the landscape of gene-altered expressions responsible for lipid accumulation. The LD proteomes further identified the proteins that mediate lipid synthesis, storage and other biological functions. Integrating these three omics uncovered 177 proteins that may be involved in lipid metabolism and LD dynamics. A LD structure-like protein LPD06283 was further verified to affect the LD morphology. Our omics studies provide not only a first integrated omics study of prokaryotic LD organelle, but also a systematic platform for facilitating further prokaryotic LD research and biofuel development.


Asunto(s)
Metabolismo de los Lípidos , Rhodococcus/metabolismo , Proteínas Bacterianas/metabolismo , Expresión Génica , Perfilación de la Expresión Génica , Genoma Bacteriano , Genómica , Lípidos , Orgánulos/metabolismo , Orgánulos/ultraestructura , Proteómica , Rhodococcus/genética , Rhodococcus/ultraestructura , Triglicéridos/biosíntesis , Triglicéridos/metabolismo
19.
Glia ; 63(5): 780-94, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25601031

RESUMEN

Fatty acid-binding proteins (FABPs) bind and solubilize long-chain fatty acids, controlling intracellular lipid dynamics. FABP7 is expressed by astrocytes in the developing brain, and suggested to be involved in the control of astrocyte lipid homeostasis. In this study, we sought to examine the role of FABP7 in astrocytes, focusing on plasma membrane lipid raft function, which is important for receptor-mediated signal transduction in response to extracellular stimuli. In FABP7-knockout (KO) astrocytes, the ligand-dependent accumulation of Toll-like receptor 4 (TLR4) and glial cell-line-derived neurotrophic factor receptor alpha 1 into lipid raft was decreased, and the activation of mitogen-activated protein kinases and nuclear factor-κB was impaired after lipopolysaccharide (LPS) stimulation when compared with wild-type astrocytes. In addition, the expression of caveolin-1, not cavin-1, 2, 3, caveolin-2, and flotillin-1, was found to be decreased at the protein and transcriptional levels. FABP7 re-expression in FABP7-KO astrocytes rescued the decreased level of caveolin-1. Furthermore, caveolin-1-transfection into FABP7-KO astrocytes significantly increased TLR4 recruitment into lipid raft and tumor necrosis factor-α production after LPS stimulation. Taken together, these data suggest that FABP7 controls lipid raft function through the regulation of caveolin-1 expression and is involved in the response of astrocytes to the external stimuli. GLIA 2015;63:780-794.


Asunto(s)
Astrocitos/citología , Caveolas/metabolismo , Caveolina 1/metabolismo , Proteínas de Unión a Ácidos Grasos/metabolismo , Regulación de la Expresión Génica/genética , Proteínas del Tejido Nervioso/metabolismo , Animales , Animales Recién Nacidos , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Caveolas/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Corteza Cerebral/citología , Colesterol/metabolismo , Citocinas/metabolismo , Proteína de Unión a los Ácidos Grasos 7 , Proteínas de Unión a Ácidos Grasos/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Factor Neurotrófico Derivado de la Línea Celular Glial/farmacología , Lipopolisacáridos/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Transducción Genética
20.
Hepatology ; 59(4): 1591-9, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24214142

RESUMEN

UNLABELLED: Autophagy can degrade aggregate-prone proteins, but excessive autophagy can have adverse effects. It would be beneficial if autophagy could be enhanced in a cell type-specific manner, but this has been difficult because the basic mechanism of autophagy is common. In the present study we found that inhibition of Niemann-Pick-type C1-like 1 (NPC1L1) by ezetimibe activates autophagy only in hepatocytes and small intestinal epithelia, but not in other cells. Ezetimibe induced accumulation of free cholesterol in the late endosome/lysosome and increased partitioning of a Ragulator component, LAMTOR1, in rafts. The latter change led to down-regulation of mammalian target of rapamycin (mTOR)C1 activity by decreasing mTOR recruitment to the late endosome/lysosome and activated autophagy. A primary effect of ezetimibe was found to be a decrease of free cholesterol in the plasma membrane, because all the results caused by ezetimibe were suppressed by supplementation of cholesterol as a methyl-ß-cyclodextrin complex. By enhancing autophagy in human primary hepatocytes with ezetimibe, insoluble mutant α1-antitrypsin Z was reduced significantly. CONCLUSION: Inhibition of NPC1L1 by ezetimibe activates autophagy in human hepatocytes by modulating cholesterol homeostasis. Ezetimibe may be used to ameliorate liver degeneration in α1-antitrypsin deficiency.


Asunto(s)
Autofagia/efectos de los fármacos , Azetidinas/farmacología , Hepatocitos/metabolismo , Proteínas de la Membrana/antagonistas & inhibidores , Mutación/genética , alfa 1-Antitripsina/genética , alfa 1-Antitripsina/metabolismo , Anticolesterolemiantes/farmacología , Proteínas Portadoras/metabolismo , Línea Celular Tumoral , Colesterol/metabolismo , Ezetimiba , Hepatocitos/efectos de los fármacos , Hepatocitos/patología , Homeostasis/efectos de los fármacos , Humanos , Péptidos y Proteínas de Señalización Intracelular , Lisosomas/metabolismo , Microdominios de Membrana/metabolismo , Proteínas de la Membrana/efectos de los fármacos , Proteínas de Transporte de Membrana , Serina-Treonina Quinasas TOR/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA