Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Drug Dev Ind Pharm ; : 1-14, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38451066

RESUMEN

OBJECTIVES: This study aimed to develop, optimize and evaluate glyceryl monooleate (GMO) based cubosomes as a drug delivery system containing cisplatin for treatment of human lung carcinoma. SIGNIFICANCE: The significance of this research was to successfully incorporate slightly water soluble and potent anticancer drug (cisplatin) into cubosomes, which provide slow and sustained release of drug for longer period of time. METHODS: The delivery system was developed through top-down approach by melting GMO and poloxamer 407 (P407) at 70 °C and then drop-wise addition of warm deionized water (70 °C) containing cisplatin. The formulation then exposed to probe sonicator for about 2 min. A randomized regular two level full factorial design with help of Design Expert was used for optimization of blank cubosomal formulations. Cisplatin loaded cubosomes were then subjected to physico-chemical characterization. RESULTS: The characterization of the formulation revealed that it had a sufficient surface charge of -9.56 ± 1.33 mV, 168.25 ± 5.73 nm particle size, and 60.64 ± 0.11% encapsulation efficiency. The in vitro release of cisplatin from the cubosomes at pH 7.4 was observed to be sustained, with 94.5% of the drug being released in 30 h. In contrast, 99% of cisplatin was released from the drug solution in just 1.5 h. In vitro cytotoxicity assay was conducted on the human lung carcinoma NCI-H226 cell line, the cytotoxicity of cisplatin-loaded cubosomes was relative to that of pure cisplatin solution, while blank (without cisplatin) cubosomes were nontoxic. CONCLUSIONS: The obtained results demonstrated the successful development of cubosomes for sustained delivery of cisplatin.


Cubosomes were prepared, optimized, and evaluated for cisplatin delivery.A randomized regular two level full factorial design was constructed to optimize blank cubosomes.Blank cubosomes consisted of GMO as the lipid and P407 as an emulsifying agent.In vitro release studies demonstrated sustained release of cisplatin from cubosomes at pH 7.4.Cytotoxicity assay on human lung carcinoma cell line NCI-H226 showed similar cytotoxicity between cisplatin-loaded cubosomes and pure cisplatin solution while blank cubosomes exhibited no toxicity.

2.
Prep Biochem Biotechnol ; : 1-13, 2024 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-38824503

RESUMEN

Interleukin-2 has emerged as a potent protein-based drug to treat various cancers, AIDS, and autoimmune diseases. Despite its immense requirement, the production procedures are inefficient to meet the demand. Therefore, efficient production procedures must be adopted to improve protein yield and decrease procedural loss. This study analyzed cytoplasmic and periplasmic IL-2 expression for increased protein yield and significant biological activity. The study is focused on cloning IL-2 into a pET-SUMO and pET-28a vector that expresses IL-2 in soluble form and inclusion bodies, respectively. Both constructs were expressed into different E. coli expression strains, but the periplasmic and cytoplasmic expression of IL-2 was highest in overnight culture in Rosetta 2 (DE3). Therefore, E. coli Rosetta 2 (DE3) was selected for large-scale production and purification. Purified IL-2 was characterized by SDS-PAGE and western blotting, while its biological activity was determined using MTT bioassay. The results depict that the periplasmic and cytoplasmic IL-2 achieved adequate purification, yielding 0.86 and 0.51 mg/mL, respectively, with significant cytotoxic activity of periplasmic and cytoplasmic IL-2. Periplasmic IL-2 has shown better yield and significant biological activity in vitro which describes its attainment of native protein structure and function.

3.
Biotechnol Lett ; 45(8): 1001-1011, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37266881

RESUMEN

Current research focuses on the soluble and high-level expression of biologically active recombinant human IL-29 protein in Escherichia coli. The codon-optimized IL-29 gene was cloned into the Champion™ pET SUMO expression system downstream of the SUMO tag under the influence of the T7 lac promoter. The expression of SUMO-fused IL-29 protein was compared in E. coli Rosetta 2(DE3), Rosetta 2(DE3) pLysS, and Rosetta-gami 2(DE3). The release of the SUMO fusion partner resulted in approximately 98 mg of native rhIL-29 protein with a purity of 99% from 1 l of fermentation culture. Purified rhIL-29 was found to be biologically active, as evaluated by its anti-proliferation assay. It was found that Champion™ pET SUMO expression system can be used to obtained high yield of biologically active soluble recombinant human protein compared to other expression vector.


Asunto(s)
Escherichia coli , Interleucinas , Humanos , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Recombinantes/metabolismo , Interleucinas/genética , Codón
4.
J Biotechnol ; 373: 24-33, 2023 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-37394182

RESUMEN

Exosomes have recently been considered ideal biotherapeutic nanocarriers that broaden the frontiers of current drug delivery systems to overcome the shortcomings associated with cytokine-based immunotherapy. Using this approach, the current study aimed to assess anti-proliferative activity of purified IL-29 and exosomes encapsulated IL-29. The IL-29+pET-28a construct was transformed into Rosetta 2(DE3) cells which was used for the large-scale production of IL-29. Exosomes isolated from H1HeLa, and SF-767 cells using Total Exosome Isolation reagent were loaded with IL-29 via sonication. Isolation of exosomes was validated using their core protein signature by western blotting and specific miRNA profiles by RT-PCR. The drug loading efficiency of exosomes derived from H1HeLa cells was higher than that of SF-767-derived exosomes. The drug release kinetics of IL-29 encapsulated exosomes exhibited stable release of the recombinant drug. Around 50% of all cancer cell lines survived when IL-29 was administered at a concentration of 20 µg/mL. A survival rate of less than 10% was observed when cells were treated with 20 µg/mL IL-29 loaded exosomes. It was concluded that IL-29 loaded exosomes had a more significant cytotoxic effect against cancer cells, which might be attributed to sustained drug release, improved half-life, superior targeting efficacy, capacity to harness endogenous intracellular trafficking pathways, and heightened biocompatibility of exosomes.


Asunto(s)
Antineoplásicos , Exosomas , Exosomas/metabolismo , Sistemas de Liberación de Medicamentos , Antineoplásicos/farmacología , Antineoplásicos/metabolismo , Citocinas/metabolismo , Factores Inmunológicos , Interleucinas/genética , Interleucinas/farmacología , Interleucinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA