Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Mol Cell ; 77(6): 1163-1175.e9, 2020 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-31995729

RESUMEN

Clearance of biomolecular condensates by selective autophagy is thought to play a crucial role in cellular homeostasis. However, the mechanism underlying selective autophagy of condensates and whether liquidity determines a condensate's susceptibility to degradation by autophagy remain unknown. Here, we show that the selective autophagic cargo aminopeptidase I (Ape1) undergoes phase separation to form semi-liquid droplets. The Ape1-specific receptor protein Atg19 localizes to the surface of Ape1 droplets both in vitro and in vivo, with the "floatability" of Atg19 preventing its penetration into droplets. In vitro reconstitution experiments reveal that Atg19 and lipidated Atg8 are necessary and sufficient for selective sequestration of Ape1 droplets by membranes. This sequestration is impaired by mutational solidification of Ape1 droplets or diminished ability of Atg19 to float. Taken together, we propose that cargo liquidity and the presence of sufficient amounts of autophagic receptor on cargo are crucial for selective autophagy of biomolecular condensates.


Asunto(s)
Aminopeptidasas/metabolismo , Familia de las Proteínas 8 Relacionadas con la Autofagia/metabolismo , Proteínas Relacionadas con la Autofagia/metabolismo , Autofagia , Receptores de Superficie Celular/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Vacuolas/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Aminopeptidasas/genética , Familia de las Proteínas 8 Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/genética , Citoplasma/metabolismo , Mutación , Unión Proteica , Transporte de Proteínas , Receptores de Superficie Celular/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Solubilidad , Proteínas de Transporte Vesicular/genética
2.
EMBO J ; 42(14): e113349, 2023 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-37306101

RESUMEN

NRF2 is a transcription factor responsible for antioxidant stress responses that is usually regulated in a redox-dependent manner. p62 bodies formed by liquid-liquid phase separation contain Ser349-phosphorylated p62, which participates in the redox-independent activation of NRF2. However, the regulatory mechanism and physiological significance of p62 phosphorylation remain unclear. Here, we identify ULK1 as a kinase responsible for the phosphorylation of p62. ULK1 colocalizes with p62 bodies, directly interacting with p62. ULK1-dependent phosphorylation of p62 allows KEAP1 to be retained within p62 bodies, thus activating NRF2. p62S351E/+ mice are phosphomimetic knock-in mice in which Ser351, corresponding to human Ser349, is replaced by Glu. These mice, but not their phosphodefective p62S351A/S351A counterparts, exhibit NRF2 hyperactivation and growth retardation. This retardation is caused by malnutrition and dehydration due to obstruction of the esophagus and forestomach secondary to hyperkeratosis, a phenotype also observed in systemic Keap1-knockout mice. Our results expand our understanding of the physiological importance of the redox-independent NRF2 activation pathway and provide new insights into the role of phase separation in this process.


Asunto(s)
Factor 2 Relacionado con NF-E2 , Estrés Oxidativo , Humanos , Animales , Ratones , Proteína 1 Asociada A ECH Tipo Kelch/genética , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Fosforilación , Proteína Sequestosoma-1/genética , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Oxidación-Reducción , Autofagia/fisiología , Homólogo de la Proteína 1 Relacionada con la Autofagia/genética , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo
3.
Nature ; 578(7794): 301-305, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32025038

RESUMEN

Many biomolecules undergo liquid-liquid phase separation to form liquid-like condensates that mediate diverse cellular functions1,2. Autophagy is able to degrade such condensates using autophagosomes-double-membrane structures that are synthesized de novo at the pre-autophagosomal structure (PAS) in yeast3-5. Whereas Atg proteins that associate with the PAS have been characterized, the physicochemical and functional properties of the PAS remain unclear owing to its small size and fragility. Here we show that the PAS is in fact a liquid-like condensate of Atg proteins. The autophagy-initiating Atg1 complex undergoes phase separation to form liquid droplets in vitro, and point mutations or phosphorylation that inhibit phase separation impair PAS formation in vivo. In vitro experiments show that Atg1-complex droplets can be tethered to membranes via specific protein-protein interactions, explaining the vacuolar membrane localization of the PAS in vivo. We propose that phase separation has a critical, active role in autophagy, whereby it organizes the autophagy machinery at the PAS.


Asunto(s)
Autofagosomas/química , Autofagosomas/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Autofagia , Proteínas Relacionadas con la Autofagia/química , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/química , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Fosforilación , Mutación Puntual , Unión Proteica , Proteínas Quinasas/química , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Vacuolas/metabolismo
4.
Mol Cell ; 60(6): 914-29, 2015 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-26687600

RESUMEN

Multicellular organisms have multiple homologs of the yeast ATG8 gene, but the differential roles of these homologs in autophagy during development remain largely unknown. Here we investigated structure/function relationships in the two C. elegans Atg8 homologs, LGG-1 and LGG-2. lgg-1 is essential for degradation of protein aggregates, while lgg-2 has cargo-specific and developmental-stage-specific roles in aggregate degradation. Crystallography revealed that the N-terminal tails of LGG-1 and LGG-2 adopt the closed and open form, respectively. LGG-1 and LGG-2 interact differentially with autophagy substrates and Atg proteins, many of which carry a LIR motif. LGG-1 and LGG-2 have structurally distinct substrate binding pockets that prefer different residues in the interacting LIR motif, thus influencing binding specificity. Lipidated LGG-1 and LGG-2 possess distinct membrane tethering and fusion activities, which may result from the N-terminal differences. Our study reveals the differential function of two ATG8 homologs in autophagy during C. elegans development.


Asunto(s)
Autofagia , Proteínas de Caenorhabditis elegans/química , Caenorhabditis elegans/metabolismo , Proteínas Asociadas a Microtúbulos/química , Animales , Familia de las Proteínas 8 Relacionadas con la Autofagia , Sitios de Unión , Caenorhabditis elegans/química , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Cristalografía por Rayos X , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Modelos Moleculares , Mutación , Conformación Proteica , Proteínas Serina-Treonina Quinasas/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
5.
J Am Chem Soc ; 144(38): 17671-17679, 2022 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-36107218

RESUMEN

Selective modulation of autophagy is a promising therapeutic strategy, especially for cancer treatment. However, the lack of specific autophagy inhibitors limits this strategy. The formation of the ATG12-ATG5-ATG16L1 complex is essential for targeting the ATG12-ATG5 conjugate to proper membranes and to generate LC3-II for the progression of autophagy. Thus, targeting ATG5-ATG16L1 protein-protein interactions (PPIs) might inhibit early stage autophagy with high specificity. In this paper, we report that a stapled peptide derived from ATG16L1 exhibits potent binding affinity to ATG5, striking resistance to proteolysis, and significant autophagy inhibition activities in cells.


Asunto(s)
Proteínas Portadoras , Proteínas Asociadas a Microtúbulos , Autofagia , Proteína 5 Relacionada con la Autofagia/metabolismo , Proteínas Relacionadas con la Autofagia/metabolismo , Proteínas Portadoras/metabolismo , Hidrocarburos , Proteínas Asociadas a Microtúbulos/metabolismo , Péptidos/metabolismo , Péptidos/farmacología
6.
Mol Cell ; 44(3): 462-75, 2011 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-22055191

RESUMEN

E1 enzymes activate ubiquitin-like proteins and transfer them to cognate E2 enzymes. Atg7, a noncanonical E1, activates two ubiquitin-like proteins, Atg8 and Atg12, and plays a crucial role in autophagy. Here, we report crystal structures of full-length Atg7 and its C-terminal domain bound to Atg8 and MgATP, as well as a solution structure of Atg8 bound to the extreme C-terminal domain (ECTD) of Atg7. The unique N-terminal domain (NTD) of Atg7 is responsible for Atg3 (E2) binding, whereas its C-terminal domain is comprised of a homodimeric adenylation domain (AD) and ECTD. The structural and biochemical data demonstrate that Atg8 is initially recognized by the C-terminal tail of ECTD and is then transferred to an AD, where the Atg8 C terminus is attacked by the catalytic cysteine to form a thioester bond. Atg8 is then transferred via a trans mechanism to the Atg3 bound to the NTD of the opposite protomer within a dimer.


Asunto(s)
Proteínas Asociadas a Microtúbulos/química , Proteínas de Saccharomyces cerevisiae/química , Adenosina Trifosfato/metabolismo , Proteína 7 Relacionada con la Autofagia , Familia de las Proteínas 8 Relacionadas con la Autofagia , Proteínas Relacionadas con la Autofagia , Sitios de Unión , Cristalografía por Rayos X , Activación Enzimática , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Modelos Moleculares , Complejos Multienzimáticos , Mutación , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Mapeo de Interacción de Proteínas , Multimerización de Proteína , Proteínas Recombinantes de Fusión/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Relación Estructura-Actividad , Factores de Tiempo , Enzimas Ubiquitina-Conjugadoras/química , Enzimas Ubiquitina-Conjugadoras/metabolismo
7.
Cell Mol Life Sci ; 72(16): 3083-96, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25948417

RESUMEN

Autophagosome formation, a landmark event in autophagy, is accomplished by the concerted actions of Atg proteins. Among all Atg proteins, Atg1 kinase in yeast and its counterpart in higher eukaryotes, ULK1 kinase, function as the most upstream factor in this process and mediate autophagy initiation. In this review, we summarize current knowledge of the structure, molecular function, and regulation of Atg1 family kinases in the initiation of autophagy.


Asunto(s)
Autofagia/fisiología , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Modelos Biológicos , Modelos Moleculares , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Secuencia de Aminoácidos , Homólogo de la Proteína 1 Relacionada con la Autofagia , Proteínas Relacionadas con la Autofagia , Humanos , Péptidos y Proteínas de Señalización Intracelular/química , Datos de Secuencia Molecular , Conformación Proteica , Proteínas Serina-Treonina Quinasas/química , Proteínas Tirosina Quinasas/metabolismo , Saccharomyces cerevisiae , Especificidad de la Especie , Proteínas de Transporte Vesicular/metabolismo
8.
EMBO Rep ; 14(2): 206-11, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23238393

RESUMEN

Atg12 is conjugated to Atg5 through enzymatic reactions similar to ubiquitination. The Atg12-Atg5 conjugate functions as an E3-like enzyme to promote lipidation of Atg8, whereas lipidated Atg8 has essential roles in both autophagosome formation and selective cargo recognition during autophagy. However, the molecular role of Atg12 modification in these processes has remained elusive. Here, we report the crystal structure of the Atg12-Atg5 conjugate. In addition to the isopeptide linkage, Atg12 forms hydrophobic and hydrophilic interactions with Atg5, thereby fixing its position on Atg5. Structural comparison with unmodified Atg5 and mutational analyses showed that Atg12 modification neither induces a conformational change in Atg5 nor creates a functionally important architecture. Rather, Atg12 functions as a binding module for Atg3, the E2 enzyme for Atg8, thus endowing Atg5 with the ability to interact with Atg3 to facilitate Atg8 lipidation.


Asunto(s)
Proteínas Portadoras/química , Proteínas Asociadas a Microtúbulos/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimología , Ubiquitina-Proteína Ligasas/química , Autofagia , Proteína 12 Relacionada con la Autofagia , Proteína 5 Relacionada con la Autofagia , Familia de las Proteínas 8 Relacionadas con la Autofagia , Proteínas Relacionadas con la Autofagia , Cristalografía por Rayos X , Lipoilación , Modelos Moleculares , Fosfatidiletanolaminas/química , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Procesamiento Proteico-Postraduccional , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína
9.
bioRxiv ; 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38979137

RESUMEN

Eukaryotic genomes are organized by condensin into 3D chromosomal architectures suitable for chromosomal segregation during mitosis. However, molecular mechanisms underlying the condensin-mediated chromosomal organization remain largely unclear. Here, we investigate the role of newly identified interaction between the Cnd1 condensin and Pmc4 mediator subunits in fission yeast, Schizosaccharomyces pombe. We develop a condensin mutation, cnd1-K658E, that impairs the condensin-mediator interaction and find that this mutation diminishes condensinmediated chromatin domains during mitosis and causes chromosomal segregation defects. The condensin-mediator interaction is involved in recruiting condensin to highly transcribed genes and mitotically activated genes, the latter of which demarcate condensin-mediated domains. Furthermore, this study predicts that mediator-driven transcription of mitotically activated genes contributes to forming domain boundaries via phase separation. This study provides a novel insight into how genome-wide gene expression during mitosis is transformed into the functional chromosomal architecture suitable for chromosomal segregation.

10.
J Biol Chem ; 287(20): 16256-66, 2012 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-22437838

RESUMEN

Vacuolar protein sorting 30 (Vps30)/autophagy-related protein 6 (Atg6) is a common component of two distinct phosphatidylinositol 3-kinase complexes. In complex I, Atg14 links Vps30 to Vps34 lipid kinase and exerts its specific role in autophagy, whereas in complex II, Vps38 links Vps30 to Vps34 and plays a crucial role in vacuolar protein sorting. However, the molecular role of Vps30 in each pathway remains unclear. Here, we report the crystal structure of the carboxyl-terminal domain of Vps30. The structure is a novel globular fold comprised of three ß-sheet-α-helix repeats. Truncation analyses showed that the domain is dispensable for the construction of both complexes, but is specifically required for autophagy through the targeting of complex I to the pre-autophagosomal structure. Thus, the domain is named the ß-α repeated, autophagy-specific (BARA) domain. On the other hand, the N-terminal region of Vps30 was shown to be specifically required for vacuolar protein sorting. These structural and functional investigations of Vps30 domains, which are also conserved in the mammalian ortholog, Beclin 1, will form the basis for studying the molecular functions of this protein family in various biological processes.


Asunto(s)
Proteínas Asociadas a Microtúbulos/química , Pliegue de Proteína , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Autofagia/fisiología , Cristalografía por Rayos X , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Transporte de Proteínas/fisiología , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
11.
EMBO J ; 28(9): 1341-50, 2009 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-19322194

RESUMEN

Atg8 is conjugated to phosphatidylethanolamine (PE) by ubiquitin-like conjugation reactions. Atg8 has at least two functions in autophagy: membrane biogenesis and target recognition. Regulation of PE conjugation and deconjugation of Atg8 is crucial for these functions in which Atg4 has a critical function by both processing Atg8 precursors and deconjugating Atg8-PE. Here, we report the crystal structures of catalytically inert human Atg4B (HsAtg4B) in complex with processed and unprocessed forms of LC3, a mammalian orthologue of yeast Atg8. On LC3 binding, the regulatory loop and the N-terminal tail of HsAtg4B undergo large conformational changes. The regulatory loop masking the entrance of the active site of free HsAtg4B is lifted by LC3 Phe119, so that a groove is formed along which the LC3 tail enters the active site. At the same time, the N-terminal tail masking the exit of the active site of HsAtg4B in the free form is detached from the enzyme core and a large flat surface is exposed, which might enable the enzyme to access the membrane-bound LC3-PE.


Asunto(s)
Autofagia/fisiología , Cisteína Endopeptidasas/química , Proteínas Asociadas a Microtúbulos/química , Modelos Moleculares , Proteínas Relacionadas con la Autofagia , Cristalografía por Rayos X , Cisteína Endopeptidasas/metabolismo , Humanos , Proteínas Asociadas a Microtúbulos/metabolismo , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína
12.
Nat Commun ; 13(1): 4063, 2022 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-35831322

RESUMEN

Point-mutations of MEK1, a central component of ERK signaling, are present in cancer and RASopathies, but their precise biological effects remain obscure. Here, we report a mutant MEK1 structure that uncovers the mechanisms underlying abnormal activities of cancer- and RASopathy-associated MEK1 mutants. These two classes of MEK1 mutations differentially impact on spatiotemporal dynamics of ERK signaling, cellular transcriptional programs, gene expression profiles, and consequent biological outcomes. By making use of such distinct characteristics of the MEK1 mutants, we identified cancer- and RASopathy-signature genes that may serve as diagnostic markers or therapeutic targets for these diseases. In particular, two AKT-inhibitor molecules, PHLDA1 and 2, are simultaneously upregulated by oncogenic ERK signaling, and mediate cancer-specific ERK-AKT crosstalk. The combined expression of PHLDA1/2 is critical to confer resistance to ERK pathway-targeted therapeutics on cancer cells. Finally, we propose a therapeutic strategy to overcome this drug resistance. Our data provide vital insights into the etiology, diagnosis, and therapeutic strategy of cancers and RASopathies.


Asunto(s)
Neoplasias , Proteínas Proto-Oncogénicas c-akt , Humanos , MAP Quinasa Quinasa 1/genética , Sistema de Señalización de MAP Quinasas/genética , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Neoplasias/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/genética
13.
J Biol Chem ; 285(2): 1508-15, 2010 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-19889643

RESUMEN

Atg16 interacts with the Atg12-Atg5 protein conjugate through its N-terminal domain and self-assembles through its coiled-coil domain (CCD). Formation of the Atg12-Atg5.Atg16 complex is essential for autophagy, the bulk degradation process conserved among most eukaryotes. Here, we report the crystal structures of full-length Saccharomyces cerevisiae Atg16 at 2.8 A resolution and its CCD at 2.5 A resolution. The CCD and full-length Atg16 each exhibit an extended alpha-helix, 90 and 130 A, respectively, and form a parallel coiled-coil dimer in the crystals. Although the apparent molecular weight of Atg16 observed by gel-filtration chromatography suggests that Atg16 is tetrameric, an analytical ultracentrifugation study showed Atg16 as a dimer in solution, consistent with the crystal structure. Evolutionary conserved surface residues clustered at the C-terminal half of Atg16 CCD were shown to be crucial for autophagy. These results will give a structural basis for understanding the molecular functions and significance of Atg16 in autophagy.


Asunto(s)
Autofagia/fisiología , Proteínas Portadoras/química , Multimerización de Proteína , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Proteína 12 Relacionada con la Autofagia , Proteínas Relacionadas con la Autofagia , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Cristalografía por Rayos X , Estructura Cuaternaria de Proteína/fisiología , Estructura Secundaria de Proteína/fisiología , Estructura Terciaria de Proteína/fisiología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Relación Estructura-Actividad
14.
Curr Opin Cell Biol ; 69: 23-29, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33445149

RESUMEN

Autophagy is an intracellular degradation system that contributes to cellular homeostasis. Autophagosome formation is a landmark event in autophagy, which sequesters and delivers cytoplasmic components to the lysosome for degradation. Based on selectivity, autophagy can be classified into bulk and selective autophagy, which are mechanistically distinct from each other, especially in the requirement of cargos for autophagosome formation. Recent studies revealed that liquid-like biomolecular condensates, which are formed through liquid-liquid phase separation, regulate the autophagosome formation of both bulk and selective autophagy. Here, we focus on recent findings on the involvement of biomolecular condensates in autophagy regulation and discuss their significance.


Asunto(s)
Autofagia , Citoplasma
15.
Nat Nanotechnol ; 16(2): 181-189, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33230318

RESUMEN

Intrinsically disordered proteins (IDPs) are ubiquitous proteins that are disordered entirely or partly and play important roles in diverse biological phenomena. Their structure dynamically samples a multitude of conformational states, thus rendering their structural analysis very difficult. Here we explore the potential of high-speed atomic force microscopy (HS-AFM) for characterizing the structure and dynamics of IDPs. Successive HS-AFM images of an IDP molecule can not only identify constantly folded and constantly disordered regions in the molecule, but can also document disorder-to-order transitions. Moreover, the number of amino acids contained in these disordered regions can be roughly estimated, enabling a semiquantitative, realistic description of the dynamic structure of IDPs.


Asunto(s)
Proteínas Intrínsecamente Desordenadas/química , Microscopía de Fuerza Atómica , Humanos , Proteínas Intrínsecamente Desordenadas/genética , Proteínas Intrínsecamente Desordenadas/metabolismo , Imagen Molecular , Mutación , Conformación Proteica , Pliegue de Proteína , Relación Estructura-Actividad Cuantitativa
16.
Biochem Biophys Res Commun ; 389(4): 612-5, 2009 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-19755117

RESUMEN

Nutrient starvation induces autophagy to degrade cytoplasmic materials in the vacuole/lysosomes. In the yeast, Saccharomyces cerevisiae, Atg17, Atg29, and Atg31/Cis1 are specifically required for autophagosome formation by acting as a scaffold complex essential for pre-autophagosomal structure (PAS) organization. Here, we show that these proteins constitutively form an Atg17-Atg29-Atg31 ternary complex, in which phosphorylated Atg31 is included. Reconstitution analysis of the ternary complex in E. coli indicates that the three proteins are included in equimolar amounts in the complex. The molecular mass of a monomeric Atg17-Atg29-Atg31 complex is calculated at 97kDa; however, analytical ultracentrifugation shows that the molecular mass of the ternary complex is 198kDa, suggesting a dimeric complex. We propose that this ternary complex acts as a functional unit for autophagosome formation.


Asunto(s)
Autofagia , Proteínas Portadoras/metabolismo , Fagosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiología , Proteínas Relacionadas con la Autofagia , Proteínas Portadoras/química , Citosol/metabolismo , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Ultracentrifugación
17.
Genes Cells ; 13(12): 1211-8, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19021777

RESUMEN

Autophagy is a non-selective bulk degradation process in which isolation membranes enclose a portion of cytoplasm to form double-membrane vesicles, called autophagosomes, and deliver their inner constituents to the lytic compartments. Recent studies have also shed light on another mode of autophagy that selectively degrades various targets. Yeast Atg8 and its mammalian homologue LC3 are ubiquitin-like modifiers that are localized on isolation membranes and play crucial roles in the formation of autophagosomes. These proteins are also involved in selective incorporation of specific cargo molecules into autophagosomes, in which Atg8 and LC3 interact with Atg19 and p62, receptor proteins for vacuolar enzymes and disease-related protein aggregates, respectively. Using X-ray crystallography and NMR, we herein report the structural basis for Atg8-Atg19 and LC3-p62 interactions. Remarkably, Atg8 and LC3 were shown to interact with Atg19 and p62, respectively, in a quite similar manner: they recognized the side-chains of Trp and Leu in a four-amino acid motif, WXXL, in Atg19 and p62 using hydrophobic pockets conserved among Atg8 homologues. Together with mutational analyses, our results show the fundamental mechanism that allows Atg8 homologues, in association with WXXL-containing proteins, to capture specific cargo molecules, thereby endowing isolation membranes and/or their assembly machineries with target selectivity.


Asunto(s)
Autofagia , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Animales , Familia de las Proteínas 8 Relacionadas con la Autofagia , Cristalografía por Rayos X , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/genética , Modelos Moleculares , Mutación , Unión Proteica , Estructura Cuaternaria de Proteína , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
18.
Mol Cell Biol ; 25(16): 7239-48, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16055732

RESUMEN

The target of rapamycin (TOR) protein kinases, Tor1 and Tor2, form two distinct complexes (TOR complex 1 and 2) in the yeast Saccharomyces cerevisiae. TOR complex 2 (TORC2) contains Tor2 but not Tor1 and controls polarity of the actin cytoskeleton via the Rho1/Pkc1/MAPK cell integrity cascade. Substrates of TORC2 and how TORC2 regulates the cell integrity pathway are not well understood. Screening for multicopy suppressors of tor2, we obtained a plasmid expressing an N-terminally truncated Ypk2 protein kinase. This truncation appears to partially disrupt an autoinhibitory domain in Ypk2, and a point mutation in this region (Ypk2(D239A)) conferred upon full-length Ypk2 the ability to rescue growth of cells compromised in TORC2, but not TORC1, function. YPK2(D239A) also suppressed the lethality of tor2Delta cells, suggesting that Ypks play an essential role in TORC2 signaling. Ypk2 is phosphorylated directly by Tor2 in vitro, and Ypk2 activity is largely reduced in tor2Delta cells. In contrast, Ypk2(D239A) has increased and TOR2-independent activity in vivo. Thus, we propose that Ypk protein kinases are direct and essential targets of TORC2, coupling TORC2 to the cell integrity cascade.


Asunto(s)
Actinas/metabolismo , Proteínas de Ciclo Celular/fisiología , Fosfatidilinositol 3-Quinasas/fisiología , Proteínas Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Actinas/química , Alelos , Secuencia de Aminoácidos , Proteínas de Ciclo Celular/metabolismo , Proliferación Celular , Citoesqueleto/metabolismo , Electroforesis en Gel de Poliacrilamida , Regulación Fúngica de la Expresión Génica , Inmunoprecipitación , Modelos Genéticos , Datos de Secuencia Molecular , Mutación , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Plásmidos/metabolismo , Mutación Puntual , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Saccharomyces cerevisiae/metabolismo , Homología de Secuencia de Aminoácido , Transducción de Señal , Temperatura
19.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 64(Pt 11): 1046-8, 2008 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-18997338

RESUMEN

Atg16 is a scaffold protein that interacts with Atg12-Atg5 protein conjugates via its N-terminal domain and self-assembles via its coiled-coil domain, thus forming a multimeric Atg12-Atg5-Atg16 complex that is essential for autophagy. The coiled-coil domain of Atg16 was expressed, purified and crystallized. The crystal belonged to space group P4(1)2(1)2 or P4(3)2(1)2, with unit-cell parameters a = 127.7, c = 77.8 A. Self-rotation functions and volume-to-weight ratio values suggested that the crystal may contain six molecules per asymmetric unit. Since the domain does not contain a methionine residue, selenomethionine-labelled crystals were prepared with a leucine-to-methionine substitution in the coiled-coil domain and these crystals were used for the collection of single-wavelength anomalous dispersion data to 2.5 A resolution.


Asunto(s)
Autofagia , Proteínas Portadoras/química , Estructura Terciaria de Proteína , Proteínas de Saccharomyces cerevisiae/química , Secuencia de Aminoácidos , Proteínas Relacionadas con la Autofagia , Cristalización , Datos de Secuencia Molecular , Complejos Multiproteicos/química , Multimerización de Proteína , Difracción de Rayos X
20.
J Mol Biol ; 430(3): 249-257, 2018 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-29237558

RESUMEN

Atg8 is a unique ubiquitin-like protein that is covalently conjugated with a phosphatidylethanolamine through reactions similar to ubiquitination and plays essential roles in autophagy. Atg7 is the E1 enzyme for Atg8, and it activates the C-terminal Gly116 of Atg8 using ATP. Here, we report the crystal structure of Atg8 bound to the C-terminal domain of Atg7 in an unprecedented mode. Atg8 neither contacts with the central ß-sheet nor binds to the catalytic site of Atg7, both of which were observed in previously reported Atg7-Atg8 structures. Instead, Atg8 binds to the C-terminal α-helix and crossover loop, thereby changing the autoinhibited conformation of the crossover loop observed in the free Atg7 structure into a short helix and a disordered loop. Mutational analyses suggested that this interaction mode is important for the activation reaction. We propose that Atg7 recognizes Atg8 through multiple steps, which would be necessary to induce a conformational change in Atg7 that is optimal for the activation reaction.


Asunto(s)
Proteína 7 Relacionada con la Autofagia/metabolismo , Familia de las Proteínas 8 Relacionadas con la Autofagia/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfato/metabolismo , Proteína 7 Relacionada con la Autofagia/química , Familia de las Proteínas 8 Relacionadas con la Autofagia/química , Cristalografía por Rayos X , Modelos Moleculares , Unión Proteica , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA