Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Hum Mol Genet ; 31(24): 4217-4227, 2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-35899771

RESUMEN

Ets1 deletion in some mouse strains causes septal defects and has been implicated in human congenital heart defects in Jacobsen syndrome, in which one copy of the Ets1 gene is missing. Here, we demonstrate that loss of Ets1 in mice results in a decrease in neural crest (NC) cells migrating into the proximal outflow tract cushions during early heart development, with subsequent malalignment of the cushions relative to the muscular ventricular septum, resembling double outlet right ventricle (DORV) defects in humans. Consistent with this, we find that cultured cardiac NC cells from Ets1 mutant mice or derived from iPS cells from Jacobsen patients exhibit decreased migration speed and impaired cell-to-cell interactions. Together, our studies demonstrate a critical role for ETS1 for cell migration in cardiac NC cells that are required for proper formation of the proximal outflow tracts. These data provide further insights into the molecular and cellular basis for development of the outflow tracts, and how perturbation of NC cells can lead to DORV.


Asunto(s)
Cardiopatías Congénitas , Cresta Neural , Proteína Proto-Oncogénica c-ets-1 , Animales , Humanos , Ratones , Movimiento Celular/genética , Corazón , Organogénesis , Proteína Proto-Oncogénica c-ets-1/genética
2.
Development ; 140(4): 820-30, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23318636

RESUMEN

Neural crest (NC) cells emerge from the dorsal trunk neural tube (NT) and migrate ventrally to colonize neuronal derivatives, as well as dorsolaterally to form melanocytes. Here, we test whether different dorsoventral levels in the NT have similar or differential ability to contribute to NC cells and their derivatives. To this end, we precisely labeled NT precursors at specific dorsoventral levels of the chick NT using fluorescent dyes and a photoconvertible fluorescent protein. NT and NC cell dynamics were then examined in vivo and in slice culture using two-photon and confocal time-lapse imaging. The results show that NC precursors undergo dynamic rearrangements within the neuroepithelium, yielding an overall ventral to dorsal movement toward the midline of the NT, where they exit in a stochastic manner to populate multiple derivatives. No differences were noted in the ability of precursors from different dorsoventral levels of the NT to contribute to NC derivatives, with the exception of sympathetic ganglia, which appeared to be 'filled' by the first population to emigrate. Rather than restricted developmental potential, however, this is probably due to a matter of timing.


Asunto(s)
Movimiento Celular/fisiología , Células Madre Embrionarias/citología , Cresta Neural/embriología , Tubo Neural/citología , Células Neuroepiteliales/fisiología , Animales , Embrión de Pollo , Biología Computacional , Células Madre Embrionarias/metabolismo , Colorantes Fluorescentes , Microscopía Confocal , Tubo Neural/embriología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Tiempo , Imagen de Lapso de Tiempo
3.
J Neurochem ; 114(6): 1720-33, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20626556

RESUMEN

Inositol 1,4,5-trisphosphate receptor type 1 (IP(3) R1) is an intracellular Ca(2+) release channel that plays crucial roles in the functions of Purkinje cells. The dynamics of IP(3) R1 on the endoplasmic reticulum membrane and the distribution of IP(3) R1 in neurons are thought to be important for the spatial regulation of Ca(2+) release. In this study, we analyzed the lateral diffusion of IP(3) R1 in Purkinje cells in cerebellar slice cultures using fluorescence recovery after photobleaching. In the dendrites of Purkinje cells, IP(3) R1 showed lateral diffusion with an effective diffusion constant of approximately 0.30 µm(2) /s, and the diffusion of IP(3) R1 was negatively regulated by actin filaments. We found that actin filaments were also involved in the regulation of IP(3) R1 diffusion in the spine of Purkinje cells. Glutamate or quisqualic acid stimulation, which activates glutamate receptors and leads to a Ca(2+) transient in Purkinje cells, decreased the diffusion of IP(3) R1 and increased the density of actin in spines. These findings indicate that the neuronal activity-dependent augmentation of actin contributes to the stabilization of IP(3) R1 in spines.


Asunto(s)
Citoesqueleto de Actina/fisiología , Actinas/fisiología , Calcio/fisiología , Dendritas/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Células de Purkinje/metabolismo , Animales , Dendritas/efectos de los fármacos , Espinas Dendríticas/efectos de los fármacos , Espinas Dendríticas/metabolismo , Difusión , Agonistas de Aminoácidos Excitadores/farmacología , Recuperación de Fluorescencia tras Fotoblanqueo , Ácido Glutámico/farmacología , Proteínas Fluorescentes Verdes/genética , Receptores de Inositol 1,4,5-Trifosfato/genética , Ratones , Ratones Endogámicos ICR , Células de Purkinje/efectos de los fármacos , Células de Purkinje/ultraestructura , Ácido Quiscuálico/farmacología , Receptores de Glutamato/fisiología , Técnicas de Cultivo de Tejidos
4.
PLoS One ; 7(4): e36148, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22563445

RESUMEN

The activity-dependent modulation of GABA-A receptor (GABA(A)R) clustering at synapses controls inhibitory synaptic transmission. Several lines of evidence suggest that gephyrin, an inhibitory synaptic scaffold protein, is a critical factor in the regulation of GABA(A)R clustering during inhibitory synaptic plasticity induced by neuronal excitation. In this study, we tested this hypothesis by studying relative gephyrin dynamics and GABA(A)R declustering during excitatory activity. Surprisingly, we found that gephyrin dispersal is not essential for GABA(A)R declustering during excitatory activity. In cultured hippocampal neurons, quantitative immunocytochemistry showed that the dispersal of synaptic GABA(A)Rs accompanied with neuronal excitation evoked by 4-aminopyridine (4AP) or N-methyl-D-aspartic acid (NMDA) precedes that of gephyrin. Single-particle tracking of quantum dot labeled-GABA(A)Rs revealed that excitation-induced enhancement of GABA(A)R lateral mobility also occurred before the shrinkage of gephyrin clusters. Physical inhibition of GABA(A)R lateral diffusion on the cell surface and inhibition of a Ca(2+) dependent phosphatase, calcineurin, completely eliminated the 4AP-induced decrease in gephyrin cluster size, but not the NMDA-induced decrease in cluster size, suggesting the existence of two different mechanisms of gephyrin declustering during activity-dependent plasticity, a GABA(A)R-dependent regulatory mechanism and a GABA(A)R-independent one. Our results also indicate that GABA(A)R mobility and clustering after sustained excitatory activity is independent of gephyrin.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de la Membrana/metabolismo , Receptores de GABA-A/metabolismo , 4-Aminopiridina/farmacología , Animales , Astrocitos/citología , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Células Cultivadas , Análisis por Conglomerados , Células HeLa , Hipocampo/citología , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Humanos , Inmunohistoquímica , N-Metilaspartato/farmacología , Puntos Cuánticos , Ratas , Ratas Wistar , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo
5.
Biochem Biophys Res Commun ; 342(2): 573-6, 2006 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-16487933

RESUMEN

Zhang et al. and Maximov et al. [S. Zhang, A. Mizutani, C. Hisatsune, T. Higo, H. Bannai, T. Nakayama, M. Hattori, and K. Mikoshiba, Protein 4.1N is required for translocation of inositol 1,4,5-trisphosphate receptor type 1 to the basolateral membrane domain in polarized Madin-Darby canine kidney cells, J. Biol. Chem. 278 (2003) 4048-4056; A. Maximov, T. S. Tang, and I. Bezprozvanny, Association of the type 1 inositol (1,4,5)-trisphosphate receptor with 4.1N protein in neurons, Mol. Cell. Neurosci. 22 (2003) 271-283.] reported that 4.1N is a binding partner of inositol 1,4,5-trisphosphate receptor type 1 (IP(3)R1), however the binding site of IP(3)R1 differed: the former determined the C-terminal 14 amino acids of the cytoplasmic tail (CTT14aa) as the binding site, while the latter assigned another segment, cytoplasmic tail middle 1 (CTM1). To solve this discrepancy, we performed immunoprecipitation and found that both the segments had binding activity to 4.1N. Both segments also interfered the 4.1N-regulated IP(3)R1 diffusion in neuronal dendrites. However, IP(3)R1 lacking the CTT14aa (IP(3)R1-DeltaCTT14aa) does not bind to 4.1N [S. Zhang, A. Mizutani, C. Hisatsune, T. Higo, H. Bannai, T. Nakayama, M. Hattori, and K. Mikoshiba, Protein 4.1N is required for translocation of inositol 1,4,5-trisphosphate receptor type 1 to the basolateral membrane domain in polarized Madin-Darby canine kidney cells, J. Biol. Chem. 278 (2003) 4048-4056.] and its diffusion constant is larger than that of IP(3)R1 full-length in neuronal dendrites [K. Fukatsu, H. Bannai, S. Zhang, H. Nakamura, T. Inoue, and K. Mikoshiba, Lateral diffusion of inositol 1,4,5-trisphosphate receptor type 1 is regulated by actin filaments and 4.1N in neuronal dendrites, J. Biol. Chem. 279 (2004) 48976-48982.]. We conclude that both the CTT14aa and CTM1 sequences can bind to 4.1N in peptide fragment forms. However, we propose that the responsible binding site for 4.1N binding in full-length tetramer form of IP(3)R1 is CTT14aa.


Asunto(s)
Canales de Calcio/metabolismo , Proteínas del Citoesqueleto/metabolismo , Inositol 1,4,5-Trifosfato/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de la Membrana/metabolismo , Neuropéptidos/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Animales , Sitios de Unión , Células COS , Células Cultivadas , Chlorocebus aethiops , Genes Reporteros , Receptores de Inositol 1,4,5-Trifosfato , Unión Proteica , Estructura Terciaria de Proteína , Ratas
6.
J Biol Chem ; 281(17): 12163-9, 2006 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-16520373

RESUMEN

Trophoblast cell lineage is established through the first cellular differentiation in mammalian embryogenesis, and its developmental potential is restricted to the extraembryonic tissues contributing solely to the placenta. Several lines of evidence suggest a relative lack of importance of DNA methylation in gene regulation in the extraembryonic tissues when compared with embryonic ones. Here we analyzed the dynamics of epigenetic status in the upstream region of mouse Ddah2 gene, which was found to be specifically repressed in a stem cell population of trophoblast cell lineage. We found a tissue-dependent differentially methylated region in the regulatory region of the Ddah2 gene. This region was hypermethylated in trophoblast stem cells and was hypomethylated in differentiated cells both in vivo and in vitro. This change was well correlated with Ddah2 expression. In addition, in vitro methylation confined to the differentially methylated region was sufficient to repress promoter activity in the reporter assay. Furthermore, a repressive pattern of histone modifications was formed around the differentially methylated region in undifferentiated trophoblast stem cells with repressed Ddah2. Our data suggest that DNA methylation-mediated chromatin remodeling is involved in the regulation of the Ddah2 gene expression and thus is important even in trophoblast cell lineage.


Asunto(s)
Amidohidrolasas/genética , Linaje de la Célula , Metilación de ADN , Epigénesis Genética , Regulación de la Expresión Génica , Células Madre/metabolismo , Trofoblastos/metabolismo , Amidohidrolasas/metabolismo , Animales , Diferenciación Celular , Cromatina/genética , Cromatina/metabolismo , Embrión de Mamíferos/metabolismo , Histonas , Luciferasas/metabolismo , Ratones , Ratones Endogámicos C57BL , Regiones Promotoras Genéticas
7.
J Biol Chem ; 279(47): 48976-82, 2004 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-15364918

RESUMEN

Inositol 1,4,5-trisphosphate receptor type1 (IP3R1) plays an important role in neuronal functions; however, the lateral diffusion of IP3R1 on the endoplasmic reticulum membrane and its regulation in the living neurons remain unknown. We expressed green fluorescent protein-tagged IP3R1 in cultured rat hippocampal neurons and observed the lateral diffusion by the fluorescence recovery after photobleaching technique. IP3R1 showed lateral diffusion with an effective diffusion constant of approximately 0.3 microm2/s. Depletion of actin filaments increased the diffusion constant of IP3R1, suggesting that the diffusion of IP3R1 is regulated negatively through actin filaments. We also found that protein 4.1N, which binds to IP3R1 and contains an actin-spectrin-binding region, was responsible for this actin regulation of the IP3R1 diffusion constant. Overexpression of dominant-negative 4.1N and blockade of 4.1N binding to IP3R1 increased the IP3R1 diffusion constant. The diffusion of IP3R type 3 (IP3R3), one of the isoforms of IP3Rs lacking the binding ability to 4.1N, was not dependent on actin filaments but became dependent on actin filaments after the addition of a 4.1N-binding sequence. These data suggest that 4.1N serves as a linker protein between IP3R1 and actin filaments. This actin filament-dependent regulation of IP3R1 diffusion may be important for the spatiotemporal regulation of intracellular Ca2+ signaling.


Asunto(s)
Actinas/metabolismo , Canales de Calcio/metabolismo , Dendritas/metabolismo , Neuronas/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Actinas/química , Animales , Células COS , Calcio/metabolismo , Células Cultivadas , Proteínas del Citoesqueleto/metabolismo , Citoesqueleto , ADN/metabolismo , ADN Complementario/metabolismo , Difusión , Retículo Endoplásmico/metabolismo , Escherichia coli/metabolismo , Genes Dominantes , Proteínas Fluorescentes Verdes/metabolismo , Hipocampo/citología , Immunoblotting , Inmunohistoquímica , Inmunoprecipitación , Receptores de Inositol 1,4,5-Trifosfato , Proteínas Luminiscentes/metabolismo , Proteínas de la Membrana/metabolismo , Modelos Biológicos , Modelos Químicos , Neuropéptidos/metabolismo , Unión Proteica , Isoformas de Proteínas , Ratas , Ratas Wistar , Factores de Tiempo , Proteína Fluorescente Roja
8.
J Biol Chem ; 279(51): 53427-34, 2004 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-15475564

RESUMEN

mRNA transport and local translation in the neuronal dendrite is implicated in the induction of synaptic plasticity. Recently, we cloned an RNA-interacting protein, SYNCRIP (heterogeneous nuclear ribonuclear protein Q1/NSAP1), that is suggested to be important for the stabilization of mRNA. We report here that SYNCRIP is a component of mRNA granules in rat hippocampal neurons. SYNCRIP was mainly found at cell bodies, but punctate expression patterns in the proximal dendrite were also seen. Time-lapse analysis in living neurons revealed that the granules labeled with fluorescent protein-tagged SYNCRIP were transported bi-directionally within the dendrite at approximately 0.05 microm/s. Treatment of neurons with nocodazole significantly inhibited the movement of green fluorescent protein-SYNCRIP-positive granules, indicating that the transport of SYNCRIP-containing granules is dependent on microtubules. The distribution of SYNCRIP-containing granules overlapped with that of dendritic RNAs and elongation factor 1alpha. SYNCRIP was also found to be co-transported with green fluorescent protein-tagged human staufen1 and the 3'-untranslated region of inositol 1,4,5-trisphosphate receptor type 1 mRNA. These results suggest that SYNCRIP is transported within the dendrite as a component of mRNA granules and raise the possibility that mRNA turnover in mRNA granules and the regulation of local protein synthesis in neuronal dendrites may involve SYNCRIP.


Asunto(s)
Canales de Calcio/química , Dendritas/metabolismo , Ribonucleoproteínas Nucleares Heterogéneas/fisiología , Neuronas/metabolismo , Receptores Citoplasmáticos y Nucleares/química , Regiones no Traducidas 3' , Animales , Antineoplásicos/farmacología , Transporte Biológico , Células Cultivadas , Clonación Molecular , Proteínas Fluorescentes Verdes/metabolismo , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Hipocampo/metabolismo , Humanos , Inmunohistoquímica , Receptores de Inositol 1,4,5-Trifosfato , Microscopía Confocal , Microtúbulos/metabolismo , Nocodazol/farmacología , Unión Proteica , Estructura Terciaria de Proteína , Proteoma , Proteómica/métodos , ARN/metabolismo , ARN Mensajero/metabolismo , Ratas , Ratas Wistar , Proteínas Recombinantes de Fusión/metabolismo , Sinapsis/metabolismo , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA