Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phys Rev Lett ; 133(1): 012501, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-39042802

RESUMEN

To search for low-energy resonant structures in isospin T=3/2 three-body systems, we have performed the experiments ^{3}H(t,^{3}He)3n and ^{3}He(^{3}He,t)3p at intermediate energies. For the 3n experiment, we have newly developed a thick Ti-^{3}H target that has the largest tritium thickness among targets of this type ever made. The 3n experiment for the first time covered the momentum-transfer region as low as 15 MeV/c, which provides ideal conditions for producing fragile systems. However, in the excitation-energy spectra we obtained, we did not observe any distinct peak structures. This is in sharp contrast to tetraneutron spectra. The distributions of the 3n and 3p spectra are found to be similar, except for the displacement in energy due to Coulomb repulsion. Comparisons with theoretical calculations suggest that three-body correlations exist in the 3n and 3p systems, although not enough to produce a resonant peak.

2.
Phys Rev Lett ; 132(22): 222501, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38877923

RESUMEN

The known I^{π}=8_{1}^{+}, E_{x}=2129-keV isomer in the semimagic nucleus ^{130}Cd_{82} was populated in the projectile fission of a ^{238}U beam at the Radioactive Isotope Beam Factory at RIKEN. The high counting statistics of the accumulated data allowed us to determine the excitation energy, E_{x}=2001.2(7) keV, and half-life, T_{1/2}=57(3) ns, of the I^{π}=6_{1}^{+} state based on γγ coincidence information. Furthermore, the half-life of the 8_{1}^{+} state, T_{1/2}=224(4) ns, was remeasured with high precision. The new experimental information, combined with available data for ^{134}Sn and large-scale shell model calculations, allowed us to extract proton and neutron effective charges for ^{132}Sn, a doubly magic nucleus far-off stability. A comparison to analogous information for ^{100}Sn provides first reliable information regarding the isospin dependence of the isoscalar and isovector effective charges in heavy nuclei.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA