Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
PLoS Biol ; 20(1): e3001505, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35030171

RESUMEN

In the clinic, most cases of congenital heart valve defects are thought to arise through errors that occur after the endothelial-mesenchymal transition (EndoMT) stage of valve development. Although mechanical forces caused by heartbeat are essential modulators of cardiovascular development, their role in these later developmental events is poorly understood. To address this question, we used the zebrafish superior atrioventricular valve (AV) as a model. We found that cellularized cushions of the superior atrioventricular canal (AVC) morph into valve leaflets via mesenchymal-endothelial transition (MEndoT) and tissue sheet delamination. Defects in delamination result in thickened, hyperplastic valves, and reduced heart function. Mechanical, chemical, and genetic perturbation of cardiac forces showed that mechanical stimuli are important regulators of valve delamination. Mechanistically, we show that forces modulate Nfatc activity to control delamination. Together, our results establish the cellular and molecular signature of cardiac valve delamination in vivo and demonstrate the continuous regulatory role of mechanical forces and blood flow during valve formation.


Asunto(s)
Válvulas Cardíacas/anomalías , Hemodinámica , Factores de Transcripción NFATC/metabolismo , Pez Cebra/embriología , Animales , Animales Modificados Genéticamente , Embrión no Mamífero , Endotelio , Corazón/embriología , Hemorreología , Fenómenos Mecánicos , Mesodermo , Factores de Transcripción NFATC/genética , Pez Cebra/genética
2.
J Cell Sci ; 132(14)2019 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-31363000

RESUMEN

Cells need to sense their mechanical environment during the growth of developing tissues and maintenance of adult tissues. The concept of force-sensing mechanisms that act through cell-cell and cell-matrix adhesions is now well established and accepted. Additionally, it is widely believed that force sensing can be mediated through cilia. Yet, this hypothesis is still debated. By using primary cilia sensing as a paradigm, we describe the physical requirements for cilium-mediated mechanical sensing and discuss the different hypotheses of how this could work. We review the different mechanosensitive channels within the cilium, their potential mode of action and their biological implications. In addition, we describe the biological contexts in which cilia are acting - in particular, the left-right organizer - and discuss the challenges to discriminate between cilium-mediated chemosensitivity and mechanosensitivity. Throughout, we provide perspectives on how quantitative analysis and physics-based arguments might help to better understand the biological mechanisms by which cells use cilia to probe their mechanical environment.


Asunto(s)
Cilios/fisiología , Animales , Fenómenos Biomecánicos , Humanos , Mecanotransducción Celular , Especificidad de Órganos , Reología
3.
Development ; 144(2): 334-344, 2017 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-27993976

RESUMEN

The heart is an endocrine organ, as cardiomyocytes (CMs) secrete natriuretic peptide (NP) hormones. Since the discovery of NPs, no other peptide hormones that affect remote organs have been identified from the heart. We identified osteocrin (Ostn) as an osteogenesis/chondrogenesis regulatory hormone secreted from CMs in zebrafish. ostn mutant larvae exhibit impaired membranous and chondral bone formation. The impaired bones were recovered by CM-specific overexpression of OSTN. We analyzed the parasphenoid (ps) as a representative of membranous bones. In the shortened ps of ostn morphants, nuclear Yap1/Wwtr1-dependent transcription was increased, suggesting that Ostn might induce the nuclear export of Yap1/Wwtr1 in osteoblasts. Although OSTN is proposed to bind to NPR3 (clearance receptor for NPs) to enhance the binding of NPs to NPR1 or NPR2, OSTN enhanced C-type NP (CNP)-dependent nuclear export of YAP1/WWTR1 of cultured mouse osteoblasts stimulated with saturable CNP. OSTN might therefore activate unidentified receptors that augment protein kinase G signaling mediated by a CNP-NPR2 signaling axis. These data demonstrate that Ostn secreted from the heart contributes to bone formation as an endocrine hormone.


Asunto(s)
Condrogénesis/genética , Miocitos Cardíacos/metabolismo , Osteogénesis/genética , Cráneo/embriología , Factores de Transcripción/fisiología , Proteínas de Pez Cebra/fisiología , Pez Cebra/embriología , Estructuras Animales/metabolismo , Animales , Animales Modificados Genéticamente , Células Cultivadas , Condrogénesis/efectos de los fármacos , Embrión no Mamífero , Células HEK293 , Corazón/metabolismo , Humanos , Ratones , Organogénesis/efectos de los fármacos , Organogénesis/genética , Osteogénesis/efectos de los fármacos , Hormonas Peptídicas/genética , Hormonas Peptídicas/metabolismo , Hormonas Peptídicas/farmacología , Hormonas Peptídicas/fisiología , Cráneo/efectos de los fármacos , Factores de Transcripción/metabolismo , Factores de Transcripción/farmacología , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/metabolismo , Proteínas de Pez Cebra/farmacología
4.
Circ Res ; 122(5): 742-751, 2018 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-29326144

RESUMEN

RATIONALE: An increase of severe ischemic heart diseases results in an increase of the patients with congestive heart failure (CHF). Therefore, new therapies are expected in addition to recanalization of coronary arteries. Previous clinical trials using natriuretic peptides (NPs) prove the improvement of CHF by NPs. OBJECTIVE: We aimed at investigating whether OSTN (osteocrin) peptide potentially functioning as an NPR (NP clearance receptor) 3-blocking peptide can be used as a new therapeutic peptide for treating CHF after myocardial infarction (MI) using animal models. METHODS AND RESULTS: We examined the effect of OSTN on circulation using 2 mouse models; the continuous intravenous infusion of OSTN after MI and the OSTN-transgenic (Tg) mice with MI. In vitro studies revealed that OSTN competitively bound to NPR3 with atrial NP. In both OSTN-continuous intravenous infusion model and OSTN-Tg model, acute inflammation within the first week after MI was reduced. Moreover, both models showed the improvement of prognosis at 28 days after MI by OSTN. Consistent with the in vitro study binding of OSTN to NPR3, the OSTN-Tg exhibited an increased plasma atrial NP and C-type NP, which might result in the improvement of CHF after MI as indicated by the reduced weight of hearts and lungs and by the reduced fibrosis. CONCLUSIONS: OSTN might suppress the worsening of CHF after MI by inhibiting clearance of NP family peptides.


Asunto(s)
Insuficiencia Cardíaca/tratamiento farmacológico , Proteínas Musculares/uso terapéutico , Infarto del Miocardio/tratamiento farmacológico , Factores de Transcripción/uso terapéutico , Animales , Factor Natriurético Atrial/metabolismo , Células HEK293 , Insuficiencia Cardíaca/etiología , Insuficiencia Cardíaca/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Musculares/metabolismo , Infarto del Miocardio/complicaciones , Infarto del Miocardio/metabolismo , Unión Proteica , Receptores del Factor Natriurético Atrial/metabolismo , Factores de Transcripción/metabolismo
5.
Development ; 143(8): 1328-39, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-26952986

RESUMEN

Mural cells (MCs) consisting of vascular smooth muscle cells and pericytes cover the endothelial cells (ECs) to regulate vascular stability and homeostasis. Here, we clarified the mechanism by which MCs develop and cover ECs by generating transgenic zebrafish lines that allow live imaging of MCs and by lineage tracing in vivo To cover cranial vessels, MCs derived from either neural crest cells or mesoderm emerged around the preformed EC tubes, proliferated and migrated along EC tubes. During their migration, the MCs moved forward by extending their processes along the inter-EC junctions, suggesting a role for inter-EC junctions as a scaffold for MC migration. In the trunk vasculature, MCs derived from mesoderm covered the ventral side of the dorsal aorta (DA), but not the posterior cardinal vein. Furthermore, the MCs migrating from the DA or emerging around intersegmental vessels (ISVs) preferentially covered arterial ISVs rather than venous ISVs, indicating that MCs mostly cover arteries during vascular development. Thus, live imaging and lineage tracing enabled us to clarify precisely how MCs cover the EC tubes and to identify the origins of MCs.


Asunto(s)
Células Endoteliales/citología , Músculo Liso Vascular/citología , Pericitos/citología , Animales , Animales Modificados Genéticamente , Vasos Sanguíneos/citología , Vasos Sanguíneos/embriología , Microscopía Confocal , Pez Cebra
6.
Development ; 142(3): 497-509, 2015 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-25564648

RESUMEN

ß-catenin regulates the transcription of genes involved in diverse biological processes, including embryogenesis, tissue homeostasis and regeneration. Endothelial cell (EC)-specific gene-targeting analyses in mice have revealed that ß-catenin is required for vascular development. However, the precise function of ß-catenin-mediated gene regulation in vascular development is not well understood, since ß-catenin regulates not only gene expression but also the formation of cell-cell junctions. To address this question, we have developed a novel transgenic zebrafish line that allows the visualization of ß-catenin transcriptional activity specifically in ECs and discovered that ß-catenin-dependent transcription is central to the bone morphogenetic protein (Bmp)-mediated formation of venous vessels. During caudal vein (CV) formation, Bmp induces the expression of aggf1, a putative causative gene for Klippel-Trenaunay syndrome, which is characterized by venous malformation and hypertrophy of bones and soft tissues. Subsequently, Aggf1 potentiates ß-catenin transcriptional activity by acting as a transcriptional co-factor, suggesting that Bmp evokes ß-catenin-mediated gene expression through Aggf1 expression. Bmp-mediated activation of ß-catenin induces the expression of Nr2f2 (also known as Coup-TFII), a member of the nuclear receptor superfamily, to promote the differentiation of venous ECs, thereby contributing to CV formation. Furthermore, ß-catenin stimulated by Bmp promotes the survival of venous ECs, but not that of arterial ECs. Collectively, these results indicate that Bmp-induced activation of ß-catenin through Aggf1 regulates CV development by promoting the Nr2f2-dependent differentiation of venous ECs and their survival. This study demonstrates, for the first time, a crucial role of ß-catenin-mediated gene expression in the development of venous vessels.


Asunto(s)
Células Endoteliales/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Venas/embriología , beta Catenina/metabolismo , Proteínas Angiogénicas/metabolismo , Animales , Animales Modificados Genéticamente , Proteínas Morfogenéticas Óseas/metabolismo , Factor de Transcripción COUP II/metabolismo , ADN Complementario/genética , Células Endoteliales/ultraestructura , Células HEK293 , Humanos , Etiquetado Corte-Fin in Situ , Luciferasas , Proteínas Luminiscentes , Microscopía Fluorescente , Morfolinos/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ARN , Venas/citología , Pez Cebra , Proteínas de Pez Cebra/metabolismo , Proteína Fluorescente Roja
7.
Dev Growth Differ ; 57(4): 333-40, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25864378

RESUMEN

Development requires cell proliferation, migration, differentiation, apoptosis, and many kinds of cell responses. Cells prepare intracellular conditions to respond to extracellular cues from neighboring cells. We have studied the development of the cardiovascular system (CVS) by visualizing morphology and signaling simultaneously using zebrafish, which express probes for both. Endodermal sheet is required for the bilateral cardiac precursor cell (CPC) migration toward the midline. Endothelial cells (ECs) proliferate specifically in the certain regions of blood vessels. Bone morphogenetic proteins (BMP) induce the remodeling of the caudal vein plexus (CVP) to form the caudal vein (CV). Our findings point to the pre-existing neighboring cells as the cells exhibiting certain responses during the development of CVS. In this review, we introduce recent results of our research on angiogenesis and cardiogenesis by spotlighting the mechanism by which ECs and CPCs are regulated by the cells next to themselves. In addition, we discuss the unanswered questions that should be clarified in the future in the field of CVS development.


Asunto(s)
Sistema Cardiovascular/embriología , Pez Cebra/embriología , Animales , Movimiento Celular , Proliferación Celular , Activación Transcripcional
8.
Bio Protoc ; 14(10): e4989, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38798980

RESUMEN

Calcium signalling in the endocardium is critical for heart valve development. Calcium ion pulses in the endocardium are generated in response to mechanical forces due to blood flow and can be visualised in the beating zebrafish heart using a genetically encoded calcium indicator such as GCaMP7a. Analysing these pulses is challenging because of the rapid movement of the heart during heartbeat. This protocol outlines an imaging analysis method used to phase-match the cardiac cycle in single z-slice movies of the beating heart, allowing easy measurement of the calcium signal. Key features • Software to synchronise and analyse frames from movies of the beating heart corresponding to a user-defined phase of the cardiac cycle. • Software to measure the fluorescence intensity of the beating heart corresponding to a user-defined region of interest.

9.
Sci Adv ; 10(32): eadp6182, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39121218

RESUMEN

Endothelial cells (ECs) are highly plastic, capable of differentiating into various cell types. Endothelial-to-mesenchymal transition (EndMT) is crucial during embryonic development and contributes substantially to vascular dysfunction in many cardiovascular diseases (CVDs). While targeting EndMT holds therapeutic promise, understanding its mechanisms and modulating its pathways remain challenging. Using single-cell RNA sequencing on three in vitro EndMT models, we identified conserved gene signatures. We validated original regulators in vitro and in vivo during embryonic heart development and peripheral artery disease. EndMT induction led to global expression changes in all EC subtypes rather than in mesenchymal clusters. We identified mitochondrial calcium uptake as a key driver of EndMT; inhibiting mitochondrial calcium uniporter (MCU) prevented EndMT in vitro, and conditional Mcu deletion in ECs blocked mesenchymal activation in a hind limb ischemia model. Tissues from patients with critical limb ischemia with EndMT features exhibited significantly elevated endothelial MCU. These findings highlight MCU as a regulator of EndMT and a potential therapeutic target.


Asunto(s)
Señalización del Calcio , Células Endoteliales , Transición Epitelial-Mesenquimal , Mitocondrias , RNA-Seq , Análisis de la Célula Individual , Animales , Humanos , Mitocondrias/metabolismo , RNA-Seq/métodos , Ratones , Células Endoteliales/metabolismo , Transición Epitelial-Mesenquimal/genética , Canales de Calcio/metabolismo , Canales de Calcio/genética , Isquemia/metabolismo , Isquemia/patología , Calcio/metabolismo , Análisis de Expresión Génica de una Sola Célula
10.
Front Psychol ; 14: 1055827, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36860786

RESUMEN

Since the time of Darwin, theories have been proposed on the origin and functions of music; however, the subject remains enigmatic. The literature shows that music is closely related to important human behaviours and abilities, namely, cognition, emotion, reward and sociality (co-operation, entrainment, empathy and altruism). Notably, studies have deduced that these behaviours are closely related to testosterone (T) and oxytocin (OXT). The association of music with important human behaviours and neurochemicals is closely related to the understanding of reproductive and social behaviours being unclear. In this paper, we describe the endocrinological functions of human social and musical behaviour and demonstrate its relationship to T and OXT. We then hypothesised that the emergence of music is associated with behavioural adaptations and emerged as humans socialised to ensure survival. Moreover, the proximal factor in the emergence of music is behavioural control (social tolerance) through the regulation of T and OXT, and the ultimate factor is group survival through co-operation. The "survival value" of music has rarely been approached from the perspective of musical behavioural endocrinology. This paper provides a new perspective on the origin and functions of music.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA