Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Allergy Clin Immunol ; 151(6): 1585-1594.e9, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36804596

RESUMEN

BACKGROUND: Drug-induced anaphylaxis is triggered by the direct stimulation of mast cells (MCs) via Mas-related G protein-coupled receptor X2 (MRGPRX2; mouse ortholog MRGPRB2). However, the precise mechanism that links MRGPRX2/B2 to MC degranulation is poorly understood. Dedicator of cytokinesis 2 (DOCK2) is a Rac activator predominantly expressed in hematopoietic cells. Although DOCK2 regulates migration and activation of leukocytes, its role in MCs remains unknown. OBJECTIVE: We aimed to elucidate whether-and if so, how-DOCK2 is involved in MRGPRX2/B2-mediated MC degranulation and anaphylaxis. METHODS: Induction of drug-induced systemic and cutaneous anaphylaxis was compared between wild-type and DOCK2-deficient mice. In addition, genetic or pharmacologic inactivation of DOCK2 in human and murine MCs was used to reveal its role in MRGPRX2/B2-mediated signal transduction and degranulation. RESULTS: Induction of MC degranulation and anaphylaxis by compound 48/80 and ciprofloxacin was severely attenuated in the absence of DOCK2. Although calcium influx and phosphorylation of several signaling molecules were unaffected, MRGPRB2-mediated Rac activation and phosphorylation of p21-activated kinase 1 (PAK1) were impaired in DOCK2-deficient MCs. Similar results were obtained when mice or MCs were treated with small-molecule inhibitors that bind to the catalytic domain of DOCK2 and inhibit Rac activation. CONCLUSION: DOCK2 regulates MRGPRX2/B2-mediated MC degranulation through Rac activation and PAK1 phosphorylation, thereby indicating that the DOCK2-Rac-PAK1 axis could be a target for preventing drug-induced anaphylaxis.


Asunto(s)
Anafilaxia , Hipersensibilidad a las Drogas , Humanos , Ratones , Animales , Anafilaxia/inducido químicamente , Degranulación de la Célula , Mastocitos/metabolismo , Receptores de Neuropéptido/genética , Receptores de Neuropéptido/metabolismo , Hipersensibilidad a las Drogas/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo
2.
Arerugi ; 73(2): 171-179, 2024.
Artículo en Japonés | MEDLINE | ID: mdl-38522931

RESUMEN

BACKGROUND: Itch is the most troublesome symptom of atopic dermatitis, and it is important to assess it appropriately for optimal treatment. We discussed issues regarding itch and the most appropriate methods of assessment at the Atopic Itch Consensus Meeting (AICOM), attended by physicians and researchers with expertise in itch treatment and research. METHODS: The AICOM participants prepared a draft consensus statement that addressed the most appropriate itch assessment methods for age groups <2 years, 2-6 years, 7-14 years, and ≥15 years. Consensus was defined as agreement by ≥80% of the participants. RESULTS: Votes were cast by 20 participants (8 dermatologists, 7 pediatricians, and 5 researchers), and a consensus on the best current methods of itch assessment was reached with 95% agreement. For infants and preschool children, because subjective evaluation is difficult, a checklist for itch assessment was developed for caregivers. CONCLUSION: For itch assessment, we recommend subjective evaluation by the patient using a rating scale. For infants and preschoolers, evaluation should be done by the caregiver using a checklist, combined with objective evaluation (of skin lesions, for example) by a physician. We anticipate that more objective itch assessment indices will be established in the future.


Asunto(s)
Dermatitis Atópica , Prurito , Lactante , Preescolar , Humanos , Índice de Severidad de la Enfermedad , Prurito/diagnóstico , Prurito/etiología , Dermatitis Atópica/complicaciones , Dermatitis Atópica/diagnóstico , Dermatitis Atópica/terapia
3.
Biochem Biophys Res Commun ; 653: 12-20, 2023 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-36848820

RESUMEN

Dedicator of cytokinesis 10 (DOCK10), an evolutionarily conserved guanine nucleotide exchange factor (GEF) for Rho GTPases, has the unique specificity within the DOCK-D subfamily to activate both Cdc42 and Rac, but the structural bases for these activities remained unknown. Here we present the crystal structures of the catalytic DHR2 domain of mouse DOCK10, complexed with either Cdc42 or Rac1. The structures revealed that DOCK10DHR2 binds to Cdc42 or Rac1 by slightly changing the arrangement of its two catalytic lobes. DOCK10 also has a flexible binding pocket for the 56th GTPase residue, allowing a novel interaction with Trp56Rac1. The conserved residues in switch 1 of Cdc42 and Rac1 showed common interactions with the unique Lys-His sequence in the ß5/ß6 loop of DOCK10DHR2. However, the interaction of switch 1 in Rac1 was less stable than that of switch 1 in Cdc42, due to amino acid differences at positions 27 and 30. Structure-based mutagenesis identified the DOCK10 residues that determine the Cdc42/Rac1 dual specificity.


Asunto(s)
Factores de Intercambio de Guanina Nucleótido , Proteína de Unión al GTP rac1 , Animales , Ratones , Factores de Intercambio de Guanina Nucleótido/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Citocinesis , Mutagénesis , Proteína de Unión al GTP cdc42/metabolismo
4.
Nat Immunol ; 12(10): 1010-6, 2011 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-21892172

RESUMEN

The adaptor ASC contributes to innate immunity through the assembly of inflammasome complexes that activate the cysteine protease caspase-1. Here we demonstrate that ASC has an inflammasome-independent, cell-intrinsic role in cells of the adaptive immune response. ASC-deficient mice showed defective antigen presentation by dendritic cells (DCs) and lymphocyte migration due to impaired actin polymerization mediated by the small GTPase Rac. Genome-wide analysis showed that ASC, but not the cytoplasmic receptor NLRP3 or caspase-1, controlled the mRNA stability and expression of Dock2, a guanine nucleotide-exchange factor that mediates Rac-dependent signaling in cells of the immune response. Dock2-deficient DCs showed defective antigen uptake similar to that of ASC-deficient cells. Ectopic expression of Dock2 in ASC-deficient cells restored Rac-mediated actin polymerization, antigen uptake and chemotaxis. Thus, ASC shapes adaptive immunity independently of inflammasomes by modulating Dock2-dependent Rac activation and actin polymerization in DCs and lymphocytes.


Asunto(s)
Actinas/química , Proteínas del Citoesqueleto/fisiología , Proteínas Activadoras de GTPasa/fisiología , Inflamasomas/fisiología , Proteínas de Unión al GTP rac/metabolismo , Actinas/metabolismo , Inmunidad Adaptativa , Animales , Presentación de Antígeno , Proteínas Reguladoras de la Apoptosis , Proteínas Adaptadoras de Señalización CARD , Movimiento Celular , Quimiotaxis de Leucocito , Células Dendríticas/inmunología , Proteínas Activadoras de GTPasa/genética , Factores de Intercambio de Guanina Nucleótido , Linfocitos/inmunología , Ratones , Ratones Endogámicos C57BL , Polimerizacion , Estabilidad del ARN
5.
Int Immunol ; 34(5): 277-289, 2022 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-35094065

RESUMEN

Effective tumor immunotherapy requires physical contact of T cells with cancer cells. However, tumors often constitute a specialized microenvironment that excludes T cells from the vicinity of cancer cells, and its underlying mechanisms are still poorly understood. DOCK2 is a Rac activator critical for migration and activation of lymphocytes. We herein show that cancer-derived cholesterol sulfate (CS), a lipid product of the sulfotransferase SULT2B1b, acts as a DOCK2 inhibitor and prevents tumor infiltration by effector T cells. Using clinical samples, we found that CS was abundantly produced in certain types of human cancers such as colon cancers. Functionally, CS-producing cancer cells exhibited resistance to cancer-specific T-cell transfer and immune checkpoint blockade. Although SULT2B1b is known to sulfate oxysterols and inactivate their tumor-promoting activity, the expression levels of cholesterol hydroxylases, which mediate oxysterol production, are low in SULT2B1b-expressing cancers. Therefore, SULT2B1b inhibition could be a therapeutic strategy to disrupt tumor immune evasion in oxysterol-non-producing cancers. Thus, our findings define a previously unknown mechanism for tumor immune evasion and provide a novel insight into the development of effective immunotherapies.


Asunto(s)
Neoplasias , Oxiesteroles , Ésteres del Colesterol/metabolismo , Humanos , Inmunoterapia , Linfocitos T/metabolismo , Microambiente Tumoral
6.
Biochem Biophys Res Commun ; 609: 183-188, 2022 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-35452959

RESUMEN

Effective cancer immunotherapy requires physical contact of T cells with cancer cells. However, tumors often constitute special microenvironments that exclude T cells and resist immunotherapy. Cholesterol sulfate (CS) is a product of sulfotransferase SULT2B1b and acts as an endogenous inhibitor of DOCK2, a Rac activator essential for migration and activation of lymphocytes. We have recently shown that cancer-derived CS prevents tumor infiltration by effector T cells. Therefore, SULT2B1b may be a therapeutic target to dampen CS-mediated immune evasion. Here, we identified 3ß-hydroxy-5-cholenoic acid (3ß-OH-5-Chln) as a cell-active inhibitor of SULT2B1b. 3ß-OH-5-Chln inhibited the cholesterol sulfotransferase activity of SULT2B1b in vitro and suppressed CS production from cancer cells expressing SULT2B1b. In vivo administration of 3ß-OH-5-Chln locally reduced CS level in murine CS-producing tumors and increased infiltration of CD8+ T cells. When combined with immune checkpoint blockade or antigen-specific T cell transfer, 3ß-OH-5-Chln suppressed the growth of CS-producing tumors. These results demonstrate that pharmacological inhibition of SULT2B1b can promote antitumor immunity through suppressing CS-mediated T cell exclusion.


Asunto(s)
Linfocitos T CD8-positivos , Neoplasias , Animales , Ésteres del Colesterol , Proteínas Activadoras de GTPasa , Factores de Intercambio de Guanina Nucleótido , Ratones , Neoplasias/tratamiento farmacológico , Sulfotransferasas , Microambiente Tumoral
7.
Int Immunol ; 33(12): 731-736, 2021 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-34491348

RESUMEN

Atopic dermatitis (AD) is one of the most prevalent chronic inflammatory skin diseases in the world. It is characterized by recurrent eczematous lesions and intense itch, and many cytokines are involved in the pathogenesis of AD. Among them, much attention has been paid to interleukin 31 (IL-31) as an AD-associated itch mediator. IL-31 is mainly produced by CD4+ helper T cells and transmits the signals via a heterodimeric receptor composed of IL-31 receptor A (IL-31RA) and oncostatin M receptor (OSMR), both of which are expressed in dorsal root ganglion (DRG) neurons. However, the molecular mechanisms of how IL-31 is produced in helper T cells upon stimulation and transmits the itch sensation to the brain were largely unknown. Recently, by using original mouse models of AD, we have identified endothelial PAS domain 1 (EPAS1) and neurokinin B (NKB) as key molecules critical for IL-31 production and IL-31-mediated itch transmission, respectively. These molecules could be novel drug targets for AD-associated itch. This review highlights our recent findings, which show the functional significance of these molecules in the IL-31-induced itch sensation, referring to their application to drug development.


Asunto(s)
Desarrollo de Medicamentos , Interleucinas/inmunología , Animales , Dermatitis Atópica , Humanos , Interleucinas/biosíntesis
8.
Int Immunol ; 33(3): 149-160, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-32986079

RESUMEN

Innate lymphoid cells (ILCs) are a family of developmentally related leukocytes that rapidly secrete polarized sets of cytokines to combat infection and promote tissue repair at mucosal barriers. Among them, group 3 ILCs (ILC3s) play an important role in maintenance of the gut homeostasis by producing IL-22, and their development and function critically depend on the transcription factor RORγt. Although recent evidence indicates that RORγt+ ILC3s are reduced in the gut in the absence of the Cdc42 activator DOCK8 (dedicator of cytokinesis 8), the underlying mechanism remains unclear. We found that genetic deletion of Dock8 in RORγt+-lineage cells markedly reduced ILC3s in the lamina propria of the small intestine. By analyzing BrdU incorporation, it was revealed that DOCK8 deficiency did not affect the cell proliferation. Furthermore, when lineage marker-negative (Lin-) α4ß7+ CD127+ RORγt- fetal liver cells were cultured with OP9 stromal cells in the presence of stem cell factor (SCF) and IL-7 in vitro, RORγt+ ILC3s normally developed irrespective of DOCK8 expression. However, DOCK8-deficient ILC3s exhibited a severe defect in survival of ILC3s under the condition with or without IL-7. Similar defects were observed when we analyzed Dock8VAGR mice having mutations in the catalytic center of DOCK8, thereby failing to activate Cdc42. Thus, DOCK8 acts in cell-autonomous manner to control survival of ILC3s in the gut through Cdc42 activation.


Asunto(s)
Factores de Intercambio de Guanina Nucleótido/metabolismo , Mucosa Intestinal/citología , Linfocitos/metabolismo , Proteína de Unión al GTP cdc42/metabolismo , Animales , Dominio Catalítico/genética , Línea Celular , Proliferación Celular/genética , Supervivencia Celular/genética , Citocinas/metabolismo , Activación Enzimática/inmunología , Factores de Intercambio de Guanina Nucleótido/genética , Células HEK293 , Humanos , Interleucina-7/metabolismo , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Factor de Células Madre/metabolismo
9.
J Allergy Clin Immunol ; 148(2): 633-638, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33819507

RESUMEN

BACKGROUND: IL-31 is a major pruritogen associated with atopic dermatitis (AD). Although a specific antibody for IL-31 receptor has been shown to alleviate pruritus in patients with AD, therapeutic approaches to inhibition of IL-31 production remain unexploited. IL-31 production by TH cells critically depends on the transcription factor EPAS1, which mediates IL31 promoter activation in collaboration with SP1. OBJECTIVE: We aimed at developing small-molecule inhibitors that selectively block IL-31 production by TH cells. METHODS: We generated the reporter cell line that inducibly expressed EPAS1 in the presence of doxycycline to mediate Il31 promoter activation, and we screened 9600 chemical compounds. The selected compounds were further examined by using TH cells from a spontaneous mouse model of AD and TH cells from patients with AD. RESULTS: We have identified 4-(2-(4-isopropylbenzylidene)hydrazineyl)benzoic acid (IPHBA) as an inhibitor of IL31 induction. Although IPHBA did not affect nonspecific T-cell proliferation, IPHBA inhibited antigen-induced IL-31 production by TH cells from both an AD mouse model and patients with AD without affecting other cytokine production and hypoxic responses. In line with this, itch responses induced by adoptive transfer of IL-31-producing TH cells were attenuated when mice were orally treated with IPHBA. Mechanistically, IPHBA inhibited the association between EPAS1 and SP1, resulting in defective recruitment of both transcription factors to the specific sites of the IL31 promoter. We also determined the structure-activity relationship of IPHBA by synthesizing and analyzing 201 analogous compounds. CONCLUSION: IPHBA could be a potential drug leading to inhibition of EPAS1-driven IL-31 production.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/antagonistas & inhibidores , Dermatitis Atópica/inmunología , Doxiciclina/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Interleucinas/inmunología , Transducción de Señal/efectos de los fármacos , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/inmunología , Dermatitis Atópica/genética , Dermatitis Atópica/patología , Regulación de la Expresión Génica/inmunología , Interleucinas/genética , Ratones , Ratones Noqueados , Regiones Promotoras Genéticas , Transducción de Señal/genética , Transducción de Señal/inmunología , Linfocitos T Colaboradores-Inductores
10.
Biochem Biophys Res Commun ; 559: 135-140, 2021 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-33940384

RESUMEN

Dedicator of cytokinesis 8 (DOCK8) is a guanine nucleotide exchange factor (GEF) for Cdc42. In humans, homozygous or compound heterozygous deletions in DOCK8 cause a combined immunodeficiency characterized by various allergic diseases including food allergies. Although group 2 innate lymphoid cells (ILC2s) contribute to the development of allergic inflammation by producing interleukin (IL)-5 and IL-13, the role of ILC2s in DOCK8 deficiency has not been fully explored. With the use of cytometry by time-of-flight (CyTOF), we performed high-dimensional phenotyping of intestinal immune cells and found that DOCK8-deficient (Dock8-/-) mice exhibited expansion of ILC2s and other leukocytes associated with type 2 immunity in the small intestine. Moreover, IL-5- and IL-13-producing cells markedly increased in Dock8-/- mice, and the majority of them were lineage-negative cells, most likely ILC2s. Intestinal ILC2s expanded when DOCK8 expression was selectively deleted in hematopoietic cells. Importantly, intestinal ILC2 expansion was also observed in Dock8VAGR mice having mutations in the catalytic center of DOCK8, thereby failing to activate Cdc42. Our findings indicate that DOCK8 is a negative regulator of intestinal ILC2s to inhibit their expansion via Cdc42 activation, and that deletion of DOCK8 causes a skewing to type 2 immunity in the gut.


Asunto(s)
Factores de Intercambio de Guanina Nucleótido/inmunología , Inmunidad Innata , Intestino Delgado/inmunología , Linfocitos/inmunología , Animales , Eliminación de Gen , Factores de Intercambio de Guanina Nucleótido/genética , Intestino Delgado/citología , Intestino Delgado/metabolismo , Linfocitos/citología , Ratones Endogámicos C57BL
11.
Int Immunol ; 32(1): 5-15, 2020 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-31630188

RESUMEN

Dedicator of cytokinesis (DOCK) proteins constitute a family of evolutionarily conserved guanine nucleotide exchange factors (GEFs) for the Rho family of GTPases. Although DOCK family proteins do not contain the Dbl homology domain typically found in other GEFs, they mediate the GTP-GDP exchange reaction through the DOCK homology region-2 (DHR-2) domain. In mammals, this family consists of 11 members, each of which has unique functions depending on the expression pattern and the substrate specificity. For example, DOCK2 is a Rac activator critical for migration and activation of leukocytes, whereas DOCK8 is a Cdc42-specific GEF that regulates interstitial migration of dendritic cells. Identification of DOCK2 and DOCK8 as causative genes for severe combined immunodeficiency syndromes in humans has highlighted their roles in immune surveillance. In addition, the recent discovery of a naturally occurring DOCK2-inhibitory metabolite has uncovered an unexpected mechanism of tissue-specific immune evasion. On the other hand, GEF-independent functions have been shown for DOCK8 in antigen-induced IL-31 production in helper T cells. This review summarizes multifaced functions of DOCK family proteins in the immune system.


Asunto(s)
Proteínas Activadoras de GTPasa/inmunología , Factores de Intercambio de Guanina Nucleótido/inmunología , Animales , Humanos , Ratones
13.
J Immunol ; 199(2): 520-530, 2017 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-28607113

RESUMEN

Parenchymal migration of naive CD4+ T cells in lymph nodes (LNs) is mediated by the Rac activator DOCK2 and PI3Kγ and is widely assumed to facilitate efficient screening of dendritic cells (DCs) presenting peptide-MHCs (pMHCs). Yet how CD4+ T cell motility, DC density, and pMHC levels interdependently regulate such interactions has not been comprehensively examined. Using intravital imaging of reactive LNs in DC-immunized mice, we show that pMHC levels determined the occurrence and timing of stable CD4+ T cell-DC interactions. Despite the variability in interaction parameters, ensuing CD4+ T cell proliferation was comparable over a wide range of pMHC levels. Unexpectedly, decreased intrinsic motility of DOCK2-/- CD4+ T cells did not impair encounters with DCs in dense paracortical networks and, instead, increased interaction stability, whereas PI3Kγ deficiency had no effect on interaction parameters. In contrast, intravital and whole-organ imaging showed that DOCK2-driven T cell motility was required to detach from pMHClow DCs and to find rare pMHChigh DCs. In sum, our data uncover flexible signal integration by scanning CD4+ T cells, suggesting a search strategy evolved to detect low-frequency DCs presenting high cognate pMHC levels.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Comunicación Celular , Movimiento Celular , Células Dendríticas/inmunología , Proteínas Activadoras de GTPasa/metabolismo , Animales , Presentación de Antígeno , Fosfatidilinositol 3-Quinasa Clase Ib/deficiencia , Fosfatidilinositol 3-Quinasa Clase Ib/genética , Fosfatidilinositol 3-Quinasa Clase Ib/metabolismo , Proteínas Activadoras de GTPasa/deficiencia , Proteínas Activadoras de GTPasa/genética , Factores de Intercambio de Guanina Nucleótido , Antígenos de Histocompatibilidad/inmunología , Microscopía Intravital/métodos , Ganglios Linfáticos/inmunología , Ganglios Linfáticos/ultraestructura , Activación de Linfocitos , Ratones
14.
J Biol Chem ; 292(6): 2191-2202, 2017 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-28028174

RESUMEN

DOCK8 is an atypical guanine nucleotide exchange factor for Cdc42, and its mutations cause combined immunodeficiency in humans. Accumulating evidence indicates that DOCK8 regulates the migration and activation of various subsets of leukocytes, but its regulatory mechanism is poorly understood. We here report that DOCK8-deficient macrophages exhibit a migration defect in a 2D setting. Although DOCK8 deficiency in macrophages did not affect the global Cdc42 activation induced by chemokine stimulation, rescue experiments revealed that the guanine nucleotide exchange factor activity of DOCK8 was required for macrophage migration. We found that DOCK8 associated with LRAP35a, an adaptor molecule that binds to the Cdc42 effector myotonic dystrophy kinase-related Cdc42-binding kinase, and facilitated its activity to phosphorylate myosin II regulatory light chain. When this interaction was disrupted in WT macrophages, they showed a migration defect, as seen in DOCK8-deficient macrophages. These results suggest that, during macrophage migration, DOCK8 links Cdc42 activation to actomyosin dynamics through the association with LRAP35a.


Asunto(s)
Movimiento Celular/fisiología , Factores de Intercambio de Guanina Nucleótido/fisiología , Macrófagos/metabolismo , Proteína de Unión al GTP cdc42/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Células Cultivadas , Factores de Intercambio de Guanina Nucleótido/metabolismo , Macrófagos/citología , Ratones , Ratones Noqueados , Fosforilación , Unión Proteica
15.
Biochem Biophys Res Commun ; 497(1): 298-304, 2018 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-29432733

RESUMEN

Rac1 is a member of the Rho family of small GTPases that regulates cytoskeletal reorganization, membrane polarization, cell migration and proliferation. Recently, a self-activating mutation of Rac1, Rac1P29S, has been identified as a recurrent somatic mutation frequently found in sun-exposed melanomas, which possesses increased inherent GDP/GTP exchange activity and cell transforming ability. However, the role of cellular Rac1-interacting proteins in the transforming potential of Rac1P29S remains unclear. We found that the catalytic domain of DOCK1, a Rac-specific guanine nucleotide exchange factor (GEF) implicated in malignancy of a variety of cancers, can greatly accelerate the GDP/GTP exchange of Rac1P29S. Enforced expression of Rac1P29S induced matrix invasion and macropinocytosis in wild-type (WT) mouse embryonic fibroblasts (MEFs), but not in DOCK1-deficient MEFs. Consistently, a selective inhibitor of DOCK1 that blocks its GEF function suppressed the invasion and macropinocytosis in WT MEFs expressing Rac1P29S. Human melanoma IGR-1 and breast cancer MDA-MB-157 cells harbor Rac1P29S mutation and express DOCK1 endogenously. Genetic inactivation and pharmacological inhibition of DOCK1 suppressed their invasion and macropinocytosis. Taken together, these results indicate that DOCK1 is a critical regulator of the malignant phenotypes induced by Rac1P29S, and suggest that targeting DOCK1 might be an effective approach to treat cancers associated with Rac1P29S mutation.


Asunto(s)
Regulación Neoplásica de la Expresión Génica/genética , Neoplasias Experimentales/genética , Neoplasias Experimentales/patología , Pinocitosis/genética , Proteínas de Unión al GTP rac/antagonistas & inhibidores , Proteína de Unión al GTP rac1/genética , Línea Celular Tumoral , Humanos , Mutación/genética , Invasividad Neoplásica
17.
Biochem Biophys Res Commun ; 489(1): 8-13, 2017 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-28546003

RESUMEN

Thymic epithelial cells (TECs) establish spatially distinct microenvironments in which developing T cells are selected to mature or die. A unique property of medullary TECs is their expression of thousands of tissue-restricted self-antigens that is largely under the control of the transcriptional regulator Aire. We previously showed that Jmjd6, a lysyl hydroxylase for splicing regulatory proteins, is important for Aire protein expression and that transplantation of Jmjd6-deficient thymic stroma into athymic nude mice resulted in multiorgan autoimmunity. Here we report that TEC-specific deletion of Jmjd6 exacerbates development of autoimmune diabetes in a mouse model, which express both ovalbumin (OVA) under the control of the rat insulin gene promoter and OT-I T cell receptor specific for OVA peptide bound to major histocompatibility complex class I Kb molecules. We found that Aire protein expression in mTECs was reduced in the absence of Jmjd6, with retention of intron 2 in Aire transcripts. Our results thus demonstrate the importance of Jmjd6 in establishment of immunological tolerance in a more physiological setting.


Asunto(s)
Diabetes Mellitus Tipo 1/metabolismo , Modelos Animales de Enfermedad , Células Epiteliales/metabolismo , Receptores de Superficie Celular/deficiencia , Receptores de Superficie Celular/metabolismo , Timo/metabolismo , Factores de Transcripción/genética , Animales , Diabetes Mellitus Tipo 1/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Timo/patología , Factores de Transcripción/metabolismo , Proteína AIRE
19.
Circ Res ; 116(10): e71-80, 2015 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-25788409

RESUMEN

RATIONALE: Vascular smooth muscle cell (SMC) phenotypic modulation and vascular remodeling contribute to the development of several vascular disorders such as restenosis after angioplasty, transplant vasculopathy, and atherosclerosis. The mechanisms underlying these processes, however, remain largely unknown. OBJECTIVE: The objective of this study is to determine the role of dedicator of cytokinesis 2 (DOCK2) in SMC phenotypic modulation and vascular remodeling. METHODS AND RESULTS: Platelet-derived growth factor-BB induced DOCK2 expression while modulating SMC phenotype. DOCK2 deficiency diminishes platelet-derived growth factor-BB or serum-induced downregulation of SMC markers. Conversely, DOCK2 overexpression inhibits SMC marker expression in primary cultured SMC. Mechanistically, DOCK2 inhibits myocardin expression, blocks serum response factor nuclear location, attenuates myocardin binding to serum response factor, and thus attenuates myocardin-induced smooth muscle marker promoter activity. Moreover, DOCK2 and Kruppel-like factor 4 cooperatively inhibit myocardin-serum response factor interaction. In a rat carotid artery balloon-injury model, DOCK2 is induced in media layer SMC initially and neointima SMC subsequently after vascular injury. Knockdown of DOCK2 dramatically inhibits the neointima formation by 60%. Most importantly, knockout of DOCK2 in mice markedly blocks ligation-induced intimal hyperplasia while restoring SMC contractile protein expression. CONCLUSIONS: Our studies identified DOCK2 as a novel regulator for SMC phenotypic modulation and vascular lesion formation after vascular injury. Therefore, targeting DOCK2 may be a potential therapeutic strategy for the prevention of vascular remodeling in proliferative vascular diseases.


Asunto(s)
Traumatismos de las Arterias Carótidas/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Remodelación Vascular , Animales , Becaplermina , Traumatismos de las Arterias Carótidas/genética , Traumatismos de las Arterias Carótidas/patología , Células Cultivadas , Modelos Animales de Enfermedad , Proteínas Activadoras de GTPasa/deficiencia , Proteínas Activadoras de GTPasa/genética , Regulación de la Expresión Génica , Factores de Intercambio de Guanina Nucleótido/genética , Hiperplasia , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Masculino , Ratones Noqueados , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/patología , Neointima , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fenotipo , Proteínas Proto-Oncogénicas c-sis/farmacología , Interferencia de ARN , Ratas Sprague-Dawley , Factor de Respuesta Sérica/genética , Factor de Respuesta Sérica/metabolismo , Transducción de Señal , Transactivadores/genética , Transactivadores/metabolismo , Transfección , Remodelación Vascular/efectos de los fármacos , Proteína de Unión al GTP rac1
20.
J Cell Sci ; 127(Pt 11): 2589-600, 2014 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-24659802

RESUMEN

G-protein-coupled receptors (GPCRs) regulate the organisation of the actin cytoskeleton by activating the Rac subfamily of small GTPases. The guanine-nucleotide-exchange factor (GEF) P-Rex1 is engaged downstream of GPCRs and phosphoinositide 3-kinase (PI3K) in many cell types, and promotes tumorigenic signalling and metastasis in breast cancer and melanoma, respectively. Although P-Rex1-dependent functions have been attributed to its GEF activity towards Rac1, we show that P-Rex1 also acts as a GEF for the Rac-related GTPase RhoG, both in vitro and in GPCR-stimulated primary mouse neutrophils. Furthermore, loss of either P-Rex1 or RhoG caused equivalent reductions in GPCR-driven Rac activation and Rac-dependent NADPH oxidase activity, suggesting they both function upstream of Rac in this system. Loss of RhoG also impaired GPCR-driven recruitment of the Rac GEF DOCK2, and F-actin, to the leading edge of migrating neutrophils. Taken together, our results reveal a new signalling hierarchy in which P-Rex1, acting as a GEF for RhoG, regulates Rac-dependent functions indirectly through RhoG-dependent recruitment of DOCK2. These findings thus have broad implications for our understanding of GPCR signalling to Rho GTPases and the actin cytoskeleton.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Neutrófilos/fisiología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Neoplasias de la Mama , Carcinogénesis , Movimiento Celular/genética , Polaridad Celular/genética , Células Cultivadas , GTP Fosfohidrolasas/genética , Factores de Intercambio de Guanina Nucleótido/genética , Melanoma , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Metástasis de la Neoplasia , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/genética , Proteínas de Unión al GTP rho
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA