Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cancer Metab ; 12(1): 16, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38812058

RESUMEN

BACKGROUND: The ketogenic diet (KD), based on high fat (over 70% of daily calories), low carbohydrate, and adequate protein intake, has become popular due to its potential therapeutic benefits for several diseases including cancer. Under KD and starvation conditions, the lack of carbohydrates promotes the production of ketone bodies (KB) from fats by the liver as an alternative source of metabolic energy. KD and starvation may affect the metabolism in cancer cells, as well as tumor characteristics. The aim of this study is to evaluate the effect of KD conditions on a wide variety of aspects of breast cancer cells in vitro. METHODS: Using two cancer and one non-cancer breast cell line, we evaluate the effect of ß-hydroxybutyrate (ßHb) treatment on cell growth, survival, proliferation, colony formation, and migration. We also assess the effect of KB on metabolic profile of the cells. Using RNAseq analysis, we elucidate the effect of ßHb on the gene expression profile. RESULTS: Significant effects were observed following treatment by ßHb which include effects on viability, proliferation, and colony formation of MCF7 cells, and different effects on colony formation of MDA-MB-231 cells, with no such effects on non-cancer HB2 cells. We found no changes in glucose intake or lactate output following ßHb treatment as measured by LC-MS, but an increase in reactive oxygen species (ROS) level was detected. RNAseq analysis demonstrated significant changes in genes involved in lipid metabolism, cancer, and oxidative phosphorylation. CONCLUSIONS: Based on our results, we conclude that differential response of cancer cell lines to ßHb treatment, as alternative energy source or signal to alter lipid metabolism and oncogenicity, supports the need for a personalized approach to breast cancer patient treatment.

2.
Anticancer Res ; 40(7): 3831-3837, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32620622

RESUMEN

BACKGROUND/AIM: The ketogenic diet has recently gained interest as potential adjuvant therapy for cancer. Many researchers have endeavored to support this claim in vitro. One common model utilizes treatment with exogenous acetoacetate in lithium salt form (LiAcAc). We aimed to determine whether the effects of treatment with LiAcAc on cell viability, as reported in the literature, accurately reflect the influence of acetoacetate. MATERIALS AND METHODS: Breast cancer and normal cell lines were treated with acetoacetate, in lithium and sodium salt forms, and cell viability was assessed. RESULTS: The effect of LiAcAc on cells was mediated by Li ions. Our results showed that the cytotoxic effects of LiAcAc treatment were significantly similar to those caused by LiCl, and also treatment with NaAcAc did not cause any significant cytotoxic effect. CONCLUSION: Treatment of cells with LiAcAc is not a convincing in vitro model for studying ketogenic diet. These findings are highly important for interpreting previously published results, and for designing new experiments to study the ketogenic diet in vitro.


Asunto(s)
Acetoacetatos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Compuestos de Litio/farmacología , Litio/farmacología , Acetoacetatos/química , Adenosina Trifosfato/metabolismo , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Cationes Monovalentes/química , Cationes Monovalentes/farmacología , Procesos de Crecimiento Celular/efectos de los fármacos , Línea Celular Tumoral , Humanos , Litio/química , Cloruro de Litio/química , Cloruro de Litio/farmacología , Compuestos de Litio/química , Células MCF-7
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA