Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Cell ; 178(2): 302-315.e23, 2019 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-31299200

RESUMEN

Pathogenic and other cytoplasmic DNAs activate the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway to induce inflammation via transcriptional activation by IRF3 and nuclear factor κB (NF-κB), but the functional consequences of exposing cGAS to chromosomes upon mitotic nuclear envelope breakdown are unknown. Here, we show that nucleosomes competitively inhibit DNA-dependent cGAS activation and that the cGAS-STING pathway is not effectively activated during normal mitosis. However, during mitotic arrest, low level cGAS-dependent IRF3 phosphorylation slowly accumulates without triggering inflammation. Phosphorylated IRF3, independently of its DNA-binding domain, stimulates apoptosis through alleviating Bcl-xL-dependent suppression of mitochondrial outer membrane permeabilization. We propose that slow accumulation of phosphorylated IRF3, normally not sufficient for inducing inflammation, can trigger transcription-independent induction of apoptosis upon mitotic aberrations. Accordingly, expression of cGAS and IRF3 in cancer cells makes mouse xenograft tumors responsive to the anti-mitotic agent Taxol. The Cancer Genome Atlas (TCGA) datasets for non-small cell lung cancer patients also suggest an effect of cGAS expression on taxane response.


Asunto(s)
Apoptosis , ADN/metabolismo , Nucleotidiltransferasas/metabolismo , Animales , Apoptosis/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Femenino , Humanos , Factor 3 Regulador del Interferón/metabolismo , Masculino , Ratones , Ratones Endogámicos NOD , Mitosis , Neoplasias/tratamiento farmacológico , Neoplasias/mortalidad , Neoplasias/patología , Nucleosomas/metabolismo , Nucleotidiltransferasas/antagonistas & inhibidores , Nucleotidiltransferasas/genética , Paclitaxel/farmacología , Paclitaxel/uso terapéutico , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/aislamiento & purificación , Transducción de Señal , Tasa de Supervivencia , Activación Transcripcional , Proteína bcl-X/metabolismo
2.
Nat Immunol ; 25(4): 592-593, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38514888
3.
Mol Cell ; 81(21): 4377-4397.e12, 2021 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-34478647

RESUMEN

Structural heterogeneity of nucleosomes in functional chromosomes is unknown. Here, we devise the template-, reference- and selection-free (TRSF) cryo-EM pipeline to simultaneously reconstruct cryo-EM structures of protein complexes from interphase or metaphase chromosomes. The reconstructed interphase and metaphase nucleosome structures are on average indistinguishable from canonical nucleosome structures, despite DNA sequence heterogeneity, cell-cycle-specific posttranslational modifications, and interacting proteins. Nucleosome structures determined by a decoy-classifying method and structure variability analyses reveal the nucleosome structural variations in linker DNA, histone tails, and nucleosome core particle configurations, suggesting that the opening of linker DNA, which is correlated with H2A C-terminal tail positioning, is suppressed in chromosomes. High-resolution (3.4-3.5 Å) nucleosome structures indicate DNA-sequence-independent stabilization of superhelical locations ±0-1 and ±3.5-4.5. The linker histone H1.8 preferentially binds to metaphase chromatin, from which chromatosome cryo-EM structures with H1.8 at the on-dyad position are reconstituted. This study presents the structural characteristics of nucleosomes in chromosomes.


Asunto(s)
Cromosomas/química , Interfase , Metafase , Nucleosomas/metabolismo , Animales , Comunicación Celular , Ciclo Celular , División Celular , Cromatina/química , Simulación por Computador , Microscopía por Crioelectrón , ADN/química , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Nucleosomas/química , Conformación Proteica , Dominios Proteicos , Procesamiento Proteico-Postraduccional , Xenopus
4.
Nat Rev Mol Cell Biol ; 13(12): 789-803, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23175282

RESUMEN

Successful cell division requires the precise and timely coordination of chromosomal, cytoskeletal and membrane trafficking events. These processes are regulated by the competing actions of protein kinases and phosphatases. Aurora B is one of the most intensively studied kinases. In conjunction with inner centromere protein (INCENP), borealin (also known as Dasra) and survivin it forms the chromosomal passenger complex (CPC). This complex targets to different locations at differing times during mitosis, where it regulates key mitotic events: correction of chromosome-microtubule attachment errors; activation of the spindle assembly checkpoint; and construction and regulation of the contractile apparatus that drives cytokinesis. Our growing understanding of the CPC has seen it develop from a mere passenger riding on the chromosomes to one of the main controllers of mitosis.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Mitosis , Animales , Aurora Quinasa B , Aurora Quinasas , Proteínas de Ciclo Celular/fisiología , Centrómero/fisiología , Drosophila melanogaster/fisiología , Humanos , Ratones , Microtúbulos/fisiología , Proteínas Serina-Treonina Quinasas/fisiología , Huso Acromático/fisiología
5.
Mol Cell ; 64(1): 189-198, 2016 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-27716483

RESUMEN

During DNA double-strand break (DSB) repair, the ring-shaped Ku70/80 complex becomes trapped on DNA and needs to be actively extracted, but it has remained unclear what provides the required energy. By means of reconstitution of DSB repair on beads, we demonstrate here that DNA-locked Ku rings are released by the AAA-ATPase p97. To achieve this, p97 requires ATP hydrolysis, cooperates with the Ufd1-Npl4 ubiquitin-adaptor complex, and specifically targets Ku80 that is modified by K48-linked ubiquitin chains. In U2OS cells, chemical inhibition of p97 or siRNA-mediated depletion of p97 or its adapters impairs Ku80 removal after non-homologous end joining of DSBs. Moreover, this inhibition attenuates early steps in homologous recombination, consistent with p97-driven Ku release also affecting repair pathway choice. Thus, our data answer a central question regarding regulation of Ku in DSB repair and illustrate the ability of p97 to segregate even tightly bound protein complexes for release from DNA.


Asunto(s)
Adenosina Trifosfatasas/genética , Proteínas Anfibias/genética , Proteínas de Ciclo Celular/genética , Reparación del ADN por Unión de Extremidades , Autoantígeno Ku/genética , Osteoblastos/metabolismo , Reparación del ADN por Recombinación , Adenosina Trifosfatasas/antagonistas & inhibidores , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Proteínas Anfibias/metabolismo , Animales , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , ADN/genética , ADN/metabolismo , Roturas del ADN de Doble Cadena , Regulación de la Expresión Génica , Humanos , Hidrólisis , Autoantígeno Ku/metabolismo , Microesferas , Osteoblastos/citología , Óvulo/química , Óvulo/citología , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteína que Contiene Valosina , Xenopus laevis
6.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33653953

RESUMEN

Chromosome segregation relies on centromeres, yet their repetitive DNA is often prone to aberrant rearrangements under pathological conditions. Factors that maintain centromere integrity to prevent centromere-associated chromosome translocations are unknown. Here, we demonstrate the importance of the centromere-specific histone H3 variant CENP-A in safeguarding DNA replication of alpha-satellite repeats to prevent structural aneuploidy. Rapid removal of CENP-A in S phase, but not other cell-cycle stages, caused accumulation of R loops with increased centromeric transcripts, and interfered with replication fork progression. Replication without CENP-A causes recombination at alpha-satellites in an R loop-dependent manner, unfinished replication, and anaphase bridges. In turn, chromosome breakage and translocations arise specifically at centromeric regions. Our findings provide insights into how specialized centromeric chromatin maintains the integrity of transcribed noncoding repetitive DNA during S phase.


Asunto(s)
Aneuploidia , Proteína A Centromérica/metabolismo , Centrómero/metabolismo , Cromatina/metabolismo , Cromosomas Humanos/metabolismo , Replicación del ADN , Línea Celular , Centrómero/genética , Proteína A Centromérica/genética , Cromatina/genética , Cromosomas Humanos/genética , Humanos , Fase S
7.
Mol Cell ; 52(5): 734-45, 2013 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-24184212

RESUMEN

The mitosis-specific phosphorylation of histone H3 at Thr3 (H3T3ph) plays an important role in chromosome segregation by recruiting Aurora B. H3T3 phosphorylation is catalyzed by Haspin, an atypical protein kinase whose kinase domain is intrinsically active without phosphorylation at the activation loop. Here, we report the molecular basis for Haspin inhibition during interphase and its reactivation in M phase. We identify a conserved basic segment that autoinhibits Haspin during interphase. This autoinhibition is neutralized when Cdk1 phosphorylates the N terminus of Haspin in order to recruit Polo-like kinase (Plk1/Plx1), which, in turn, further phosphorylates multiple sites at the Haspin N terminus. Although Plx1, and not Aurora B, is critical for H3T3 phosphorylation in Xenopus egg extracts, Plk1 and Aurora B both promote this modification in human cells. Thus, M phase-specific H3T3 phosphorylation is governed by the combinatorial action of mitotic kinases that neutralizes Haspin autoinhibition through a mechanism dependent on multisite phosphorylation.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Histonas/metabolismo , Mitosis/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Xenopus/metabolismo , Animales , Aurora Quinasa B/genética , Aurora Quinasa B/metabolismo , Proteína Quinasa CDC2/genética , Proteína Quinasa CDC2/metabolismo , Proteínas de Ciclo Celular/genética , División Celular/genética , Línea Celular Tumoral , Secuencia Conservada , Células HeLa , Histonas/genética , Humanos , Interfase/genética , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Proteínas de Xenopus/genética , Xenopus laevis
8.
Proc Natl Acad Sci U S A ; 115(5): E876-E885, 2018 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-29339483

RESUMEN

Mutations in CDCA7, the SNF2 family protein HELLS (LSH), or the DNA methyltransferase DNMT3b cause immunodeficiency-centromeric instability-facial anomalies (ICF) syndrome. While it has been speculated that DNA methylation defects cause this disease, little is known about the molecular function of CDCA7 and its functional relationship to HELLS and DNMT3b. Systematic analysis of how the cell cycle, H3K9 methylation, and the mitotic kinase Aurora B affect proteomic profiles of chromatin in Xenopus egg extracts revealed that HELLS and CDCA7 form a stoichiometric complex on chromatin, in a manner sensitive to Aurora B. Although HELLS alone fails to remodel nucleosomes, we demonstrate that the HELLS-CDCA7 complex possesses nucleosome remodeling activity. Furthermore, CDCA7 is essential for loading HELLS onto chromatin, and CDCA7 harboring patient ICF mutations fails to recruit the complex to chromatin. Together, our study identifies a unique bipartite nucleosome remodeling complex where the functional remodeling activity is split between two proteins and thus delineates the defective pathway in ICF syndrome.


Asunto(s)
ADN Helicasas/metabolismo , Cara/anomalías , Síndromes de Inmunodeficiencia/genética , Mutación , Proteínas Nucleares/metabolismo , Animales , Aurora Quinasa B/metabolismo , Ciclo Celular , Cromatina/química , Análisis por Conglomerados , ADN (Citosina-5-)-Metiltransferasas/genética , ADN Helicasas/genética , Metilación de ADN , Células HeLa , Histonas/metabolismo , Humanos , Proteínas Nucleares/genética , Nucleosomas/química , Óvulo/metabolismo , Péptidos/química , Enfermedades de Inmunodeficiencia Primaria , Unión Proteica , Dominios Proteicos , Proteómica , Interferencia de ARN , Xenopus laevis , ADN Metiltransferasa 3B
9.
Proc Natl Acad Sci U S A ; 114(8): 1928-1933, 2017 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-28167779

RESUMEN

Centromeres are highly specialized chromatin domains that enable chromosome segregation and orchestrate faithful cell division. Human centromeres are composed of tandem arrays of α-satellite DNA, which spans up to several megabases. Little is known about the mechanisms that maintain integrity of the long arrays of α-satellite DNA repeats. Here, we monitored centromeric repeat stability in human cells using chromosome-orientation fluorescent in situ hybridization (CO-FISH). This assay detected aberrant centromeric CO-FISH patterns consistent with sister chromatid exchange at the frequency of 5% in primary tissue culture cells, whereas higher levels were seen in several cancer cell lines and during replicative senescence. To understand the mechanism(s) that maintains centromere integrity, we examined the contribution of the centromere-specific histone variant CENP-A and members of the constitutive centromere-associated network (CCAN), CENP-C, CENP-T, and CENP-W. Depletion of CENP-A and CCAN proteins led to an increase in centromere aberrations, whereas enhancing chromosome missegregation by alternative methods did not, suggesting that CENP-A and CCAN proteins help maintain centromere integrity independently of their role in chromosome segregation. Furthermore, superresolution imaging of centromeric CO-FISH using structured illumination microscopy implied that CENP-A protects α-satellite repeats from extensive rearrangements. Our study points toward the presence of a centromere-specific mechanism that actively maintains α-satellite repeat integrity during human cell proliferation.


Asunto(s)
División Celular , Proteína A Centromérica/metabolismo , Centrómero/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , ADN Satélite/metabolismo , Envejecimiento/genética , Línea Celular Tumoral , Senescencia Celular/genética , Centrómero/genética , Centrómero/ultraestructura , Cromatina/metabolismo , Segregación Cromosómica , ADN Satélite/genética , ADN Satélite/ultraestructura , Humanos , Hibridación Fluorescente in Situ , Microscopía/métodos , Neoplasias/genética , Cultivo Primario de Células
10.
Nat Rev Mol Cell Biol ; 12(8): 463, 2011 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-21712842
11.
Bioessays ; 37(10): 1074-85, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26222742

RESUMEN

Chromosomes are not only carriers of the genetic material, but also actively regulate the assembly of complex intracellular architectures. During mitosis, chromosome-induced microtubule polymerisation ensures spindle assembly in cells without centrosomes and plays a supportive role in centrosome-containing cells. Chromosomal signals also mediate post-mitotic nuclear envelope (NE) re-formation. Recent studies using novel approaches to manipulate histones in oocytes, where functions can be analysed in the absence of transcription, have established that nucleosomes, but not DNA alone, mediate the chromosomal regulation of spindle assembly and NE formation. Both processes require the generation of RanGTP by RCC1 recruited to nucleosomes but nucleosomes also acquire cell cycle stage specific regulators, Aurora B in mitosis and ELYS, the initiator of nuclear pore complex assembly, at mitotic exit. Here, we review the mechanisms by which nucleosomes control assembly and functions of the spindle and the NE, and discuss their implications for genome maintenance.


Asunto(s)
Membrana Nuclear/metabolismo , Nucleosomas/fisiología , Huso Acromático/metabolismo , Animales , Ensamble y Desensamble de Cromatina , Inestabilidad Genómica , Humanos , Microtúbulos/metabolismo
12.
EMBO J ; 31(6): 1467-79, 2012 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-22274615

RESUMEN

Shugoshins (Sgo) are conserved proteins that act as protectors of centromeric cohesion and as sensors of tension for the machinery that eliminates improper kinetochore-microtubule attachments. Most vertebrates contain two Sgo proteins, but their specific functions are not always clear. Xenopus laevis Sgo1, XSgo1, protects centromeric cohesin from the prophase dissociation pathway. Here, we report the identification of XSgo2 and show that it does not regulate cohesion. Instead, we find that it participates in bipolar spindle assembly. Both Sgo proteins interact physically with the Chromosomal Passenger Complex (CPC) containing Aurora B, a key regulator of mitosis, but the functional consequences of such interaction are distinct. XSgo1 is required for proper localization of the CPC while XSgo2 positively contributes to its activation and the subsequent phosphorylation of at least one key substrate for bipolar spindle assembly, the microtubule depolymerizing kinesin MCAK (Mitotic Centromere-Associated Kinesin). Thus, the two Xenopus Sgo proteins have non-overlapping functions in chromosome segregation. Our results further suggest that this functional specificity could rely on the association of XSgo1 and XSgo2 with different regulatory subunits of the PP2A complex.


Asunto(s)
Segregación Cromosómica , Proteínas Nucleares/metabolismo , Huso Acromático/genética , Huso Acromático/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/genética , Xenopus laevis/metabolismo , Secuencia de Aminoácidos , Animales , Aurora Quinasas , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Cromosomas , Cinesinas/genética , Cinesinas/metabolismo , Microtúbulos/genética , Microtúbulos/metabolismo , Mitosis/genética , Datos de Secuencia Molecular , Proteínas Nucleares/genética , Fosforilación , Proteína Fosfatasa 2/genética , Proteína Fosfatasa 2/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Xenopus/genética , Cohesinas
13.
Chromosoma ; 122(3): 135-58, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23512483

RESUMEN

The kinetochore, the proteinaceous structure on the mitotic centromere, functions as a mechanical latch that hooks onto microtubules to support directional movement of chromosomes. The structure also brings in a number of signaling molecules, such as kinases and phosphatases, which regulate microtubule dynamics and cell cycle progression. Erroneous microtubule attachment is destabilized by Aurora B-mediated phosphorylation of multiple microtubule-binding protein complexes at the kinetochore, such as the KMN network proteins and the Ska/Dam1 complex, while Plk-dependent phosphorylation of BubR1 stabilizes kinetochore-microtubule attachment by recruiting PP2A-B56. Spindle assembly checkpoint (SAC) signaling, which is activated by unattached kinetochores and inhibits the metaphase-to-anaphase transition, depends on kinetochore recruitment of the kinase Bub1 through Mps1-mediated phosphorylation of the kinetochore protein KNL1 (also known as Blinkin in mammals, Spc105 in budding yeast, and Spc7 in fission yeast). Recruitment of protein phosphatase 1 to KNL1 is necessary to silence the SAC upon bioriented microtubule attachment. One of the key unsolved questions in the mitosis field is how a mechanical change at the kinetochore upon microtubule attachment is converted to these and other chemical signals that control microtubule attachment and the SAC. Rapid progress in the field is revealing the existence of an intricate signaling network created right on the kinetochore. Here we review the current understanding of phosphorylation-mediated regulation of kinetochore functions and discuss how this signaling network generates an accurate switch that turns on and off the signaling output in response to kinetochore-microtubule attachment.


Asunto(s)
Cinetocoros/metabolismo , Microtúbulos/metabolismo , Mitosis , Fosforilación , Animales , Segregación Cromosómica , Humanos , Microtúbulos/genética , Unión Proteica , Saccharomycetales/citología , Saccharomycetales/genética , Saccharomycetales/metabolismo , Huso Acromático
14.
bioRxiv ; 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38328033

RESUMEN

Cryo-EM single-particle analyses typically require target macromolecule concentration at 0.05~5.0 mg/ml, which is often difficult to achieve. Here, we devise Magnetic Isolation and Concentration (MagIC)-cryo-EM, a technique enabling direct structural analysis of targets captured on magnetic beads, thereby reducing the targets' concentration requirement to < 0.0005 mg/ml. Adapting MagIC-cryo-EM to a Chromatin Immunoprecipitation protocol, we characterized structural variations of the linker histone H1.8-associated nucleosomes that were isolated from interphase and metaphase chromosomes in Xenopus egg extract. Combining Duplicated Selection To Exclude Rubbish particles (DuSTER), a particle curation method that removes low signal-to-noise ratio particles, we also resolved the 3D cryo-EM structures of H1.8-bound nucleoplasmin NPM2 isolated from interphase chromosomes and revealed distinct open and closed structural variants. Our study demonstrates the utility of MagIC-cryo-EM for structural analysis of scarce macromolecules in heterogeneous samples and provides structural insights into the cell cycle-regulation of H1.8 association to nucleosomes.

15.
Sci Adv ; 10(34): eadp5753, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39178260

RESUMEN

Mutations of the SNF2 family ATPase HELLS and its activator CDCA7 cause immunodeficiency, centromeric instability, and facial anomalies syndrome, characterized by DNA hypomethylation at heterochromatin. It remains unclear why CDCA7-HELLS is the sole nucleosome remodeling complex whose deficiency abrogates the maintenance of DNA methylation. We here identify the unique zinc-finger domain of CDCA7 as an evolutionarily conserved hemimethylation-sensing zinc finger (HMZF) domain. Cryo-electron microscopy structural analysis of the CDCA7-nucleosome complex reveals that the HMZF domain can recognize hemimethylated CpG in the outward-facing DNA major groove within the nucleosome core particle, whereas UHRF1, the critical activator of the maintenance methyltransferase DNMT1, cannot. CDCA7 recruits HELLS to hemimethylated chromatin and facilitates UHRF1-mediated H3 ubiquitylation associated with replication-uncoupled maintenance DNA methylation. We propose that the CDCA7-HELLS nucleosome remodeling complex assists the maintenance of DNA methylation on chromatin by sensing hemimethylated CpG that is otherwise inaccessible to UHRF1 and DNMT1.


Asunto(s)
Proteínas Potenciadoras de Unión a CCAAT , Metilación de ADN , Nucleosomas , Ubiquitina-Proteína Ligasas , Humanos , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Nucleosomas/metabolismo , Nucleosomas/genética , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Proteínas Potenciadoras de Unión a CCAAT/genética , Microscopía por Crioelectrón , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/química , Islas de CpG , Ubiquitinación , Evolución Molecular , ADN/metabolismo , ADN/química , ADN/genética , Dedos de Zinc , Cromatina/metabolismo , Cromatina/genética , ADN (Citosina-5-)-Metiltransferasa 1/metabolismo , ADN (Citosina-5-)-Metiltransferasa 1/genética , ADN Helicasas/metabolismo , ADN Helicasas/genética , ADN Helicasas/química , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/química , Eucariontes/genética , Eucariontes/metabolismo , Unión Proteica , Histonas/metabolismo , Histonas/genética , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/química
16.
bioRxiv ; 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38464254

RESUMEN

Eukaryotic chromosome segregation requires kinetochores, multi-megadalton protein machines that assemble on the centromeres of chromosomes and mediate attachments to dynamic spindle microtubules. Kinetochores are built from numerous complexes, and understanding how they are arranged is key to understanding how kinetochores perform their multiple functions. However, an integrated understanding of kinetochore architecture has not yet been established. To address this, we purified functional, native kinetochores from Kluyveromyces marxianus and examined them by electron microscopy, cryo-electron tomography and atomic force microscopy. The kinetochores are extremely large, flexible assemblies that exhibit features consistent with prior models. We assigned kinetochore polarity by visualizing their interactions with microtubules and locating the microtubule binder Ndc80c. This work shows that isolated kinetochores are more dynamic and complex than what might be anticipated based on the known structures of recombinant subassemblies, and provides the foundation to study the global architecture and functions of kinetochores at a structural level.

17.
Curr Biol ; 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39127048

RESUMEN

Eukaryotic chromosome segregation requires kinetochores, multi-megadalton protein machines that assemble on the centromeres of chromosomes and mediate attachments to dynamic spindle microtubules. Kinetochores are built from numerous complexes, and there has been progress in structural studies on recombinant subassemblies. However, there is limited structural information on native kinetochore architecture. To address this, we purified functional, native kinetochores from the thermophilic yeast Kluyveromyces marxianus and examined them by electron microscopy (EM), cryoelectron tomography (cryo-ET), and atomic force microscopy (AFM). The kinetochores are extremely large, flexible assemblies that exhibit features consistent with prior models. We assigned kinetochore polarity by visualizing their interactions with microtubules and locating the microtubule binder, Ndc80c. This work shows that isolated kinetochores are more dynamic and complex than what might be anticipated based on the known structures of recombinant subassemblies and provides the foundation to study the global architecture and functions of kinetochores at a structural level.

18.
bioRxiv ; 2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-36778482

RESUMEN

5-Methylcytosine (5mC) and DNA methyltransferases (DNMTs) are broadly conserved in eukaryotes but are also frequently lost during evolution. The mammalian SNF2 family ATPase HELLS and its plant ortholog DDM1 are critical for maintaining 5mC. Mutations in HELLS, its activator CDCA7, and the de novo DNA methyltransferase DNMT3B, cause immunodeficiency-centromeric instability-facial anomalies (ICF) syndrome, a genetic disorder associated with the loss of DNA methylation. We here examine the coevolution of CDCA7, HELLS and DNMTs. While DNMT3, the maintenance DNA methyltransferase DNMT1, HELLS, and CDCA7 are all highly conserved in vertebrates and green plants, they are frequently co-lost in other evolutionary clades. The presence-absence patterns of these genes are not random; almost all CDCA7 harboring eukaryote species also have HELLS and DNMT1 (or another maintenance methyltransferase, DNMT5). Coevolution of presence-absence patterns (CoPAP) analysis in Ecdysozoa further indicates coevolutionary linkages among CDCA7, HELLS, DNMT1 and its activator UHRF1. We hypothesize that CDCA7 becomes dispensable in species that lost HELLS or DNA methylation, and/or the loss of CDCA7 triggers the replacement of DNA methylation by other chromatin regulation mechanisms. Our study suggests that a unique specialized role of CDCA7 in HELLS-dependent DNA methylation maintenance is broadly inherited from the last eukaryotic common ancestor.

19.
Mol Biol Cell ; 34(6): ar61, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-36947236

RESUMEN

The human centromere comprises large arrays of repetitive α-satellite DNA at the primary constriction of mitotic chromosomes. In addition, centromeres are epigenetically specified by the centromere-specific histone H3 variant CENP-A that supports kinetochore assembly to enable chromosome segregation. Because CENP-A is bound to only a fraction of the α-satellite elements within the megabase-sized centromere DNA, correlating the three-dimensional (3D) organization of α-satellite DNA and CENP-A remains elusive. To visualize centromere organization within a single chromatid, we used a combination of the centromere chromosome orientation fluorescence in situ hybridization (Cen-CO-FISH) technique together with structured illumination microscopy. Cen-CO-FISH allows the differential labeling of the sister chromatids without the denaturation step used in conventional FISH that may affect DNA structure. Our data indicate that α-satellite DNA is arranged in a ring-like organization within prometaphase chromosomes, in the presence or absence of spindle's microtubules. Using expansion microscopy, we found that CENP-A organization within mitotic chromosomes follows a rounded pattern similar to that of α-satellite DNA, often visible as a ring thicker at the outer surface oriented toward the kinetochore-microtubule interface. Collectively, our data provide a 3D reconstruction of α-satellite DNA along with CENP-A clusters that outlines the overall architecture of the mitotic centromere.


Asunto(s)
ADN Satélite , Microscopía , Humanos , Proteína A Centromérica/metabolismo , Hibridación Fluorescente in Situ , Proteínas Cromosómicas no Histona/metabolismo , Autoantígenos/metabolismo , Centrómero/metabolismo , ADN
20.
Elife ; 122023 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-37769127

RESUMEN

5-Methylcytosine (5mC) and DNA methyltransferases (DNMTs) are broadly conserved in eukaryotes but are also frequently lost during evolution. The mammalian SNF2 family ATPase HELLS and its plant ortholog DDM1 are critical for maintaining 5mC. Mutations in HELLS, its activator CDCA7, and the de novo DNA methyltransferase DNMT3B, cause immunodeficiency-centromeric instability-facial anomalies (ICF) syndrome, a genetic disorder associated with the loss of DNA methylation. We here examine the coevolution of CDCA7, HELLS and DNMTs. While DNMT3, the maintenance DNA methyltransferase DNMT1, HELLS, and CDCA7 are all highly conserved in vertebrates and green plants, they are frequently co-lost in other evolutionary clades. The presence-absence patterns of these genes are not random; almost all CDCA7 harboring eukaryote species also have HELLS and DNMT1 (or another maintenance methyltransferase, DNMT5). Coevolution of presence-absence patterns (CoPAP) analysis in Ecdysozoa further indicates coevolutionary linkages among CDCA7, HELLS, DNMT1 and its activator UHRF1. We hypothesize that CDCA7 becomes dispensable in species that lost HELLS or DNA methylation, and/or the loss of CDCA7 triggers the replacement of DNA methylation by other chromatin regulation mechanisms. Our study suggests that a unique specialized role of CDCA7 in HELLS-dependent DNA methylation maintenance is broadly inherited from the last eukaryotic common ancestor.


Asunto(s)
Metilación de ADN , Nucleosomas , Animales , ADN Helicasas/metabolismo , ADN (Citosina-5-)-Metiltransferasas/genética , ADN , Mamíferos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA