Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Food Technol Biotechnol ; 62(2): 254-263, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39045305

RESUMEN

Research background: Preparation of medicinal fungi for experimental purposes usually involves the extraction and determination of the quality and quantity of bioactive compounds prior to the biological experiment. Water, a common polar solvent, is usually used for traditional preparations for consumption. The application of high temperatures during water extraction can affect the chemical composition and functional properties of the extracts. Therefore, the aim of this study is to compare the differences in composition between extracts obtained with heat-assisted and cold water extractions of six selected species of fungi (Lignosus rhinocerus, Ophiocordyceps sinensis, Inonotus obliquus, Antrodia camphorata, Phellinus linteus and Monascus purpureus) and their cytotoxicity against human lung and breast cancer cells. Experimental approach: The extracts obtained with heat-assisted and cold water extraction of six species of fungi were analysed to determine their protein, carbohydrate and phenolic contents. Their cytotoxicity was tested against lung (A549) and breast (MCF-7 and MDA-MB-231) cancer cell lines. The most potent extract was further separated into its protein and non-protein fractions to determine their respective cytotoxicity. Results and conclusions: The cytotoxicity of the different extracts obtained with heat-assisted and cold water extraction varied. Comparing the two extractions, the cold water extraction resulted in a significantly higher yield of proteins (except M. purpureus) and phenolic compounds (except A. camphorata), while the extracts of I. obliquus and M. purpureus obtained with heat-assisted extraction had a significantly higher carbohydrate mass fraction. Notably, the cold water extract of I. obliquus showed cytotoxicity (IC50=(701±35) µg/mL), which was one of the highest of the extracts tested against A549 cells. The cold water extract of I. obliquus was selected for further studies. Our results showed that cold water extracts generally have higher cytotoxicity against selected human cancer cell lines, with the exception of O. sinensis and A. camphorata extracts. Novelty and scientific contribution: This study reports the advantage of cold water extracts of fungi over those obtained with heat-assisted extraction in terms of cytotoxicity against human cancer cell lines and emphasises the role of extraction conditions, particularly heat, in influencing chemical composition and cytotoxic effects.

2.
Food Technol Biotechnol ; 60(1): 80-88, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35440880

RESUMEN

Research background: Tiger milk mushroom (Lignosus rhinocerus) is a medicinal mushroom that is geographically distributed in the region of South China, Thailand, Malaysia, Indonesia, Philippines and Papua New Guinea. Consumption of its sclerotium has been reported to treat various ailments. However, its anticancer potential towards oral cancer cell lines is yet to be determined considering the traditional method of its consumption by biting/chewing of the sclerotium. Experimental approach: Mushroom sclerotial powder of cultivar TM02® was extracted and fractionated in a chromatographic column prior to cytotoxicity testing against a panel of human oral cancer cell lines. The capability of the identified bioactive fraction in regulating several molecules associated with its tumour necrosis factor (TNF) pathway was investigated. Results and conclusions: 2,5-Diphenyl-2H-tetrazolium bromide (MTT) proliferation assay indicated that cell lines ORL-48 (derived from gingiva), ORL-188 (derived from the tongue) and ORL-204 (derived from buccal mucosa) were inhibited by cold water extract of L. rhinocerus sclerotia and its high-molecular-mass fraction (HMM) in varying degrees with ORL-204 being most affected. Hence, the treatment of ORL-204 with HMM mushroom extract was further investigated. HMM mushroom extract induced apoptosis and G0/G1 phase cell cycle arrest through caspase-3/7 cleavage. Activities of MIP2 and COX-2 were downregulated by 0.2- and 4.6-fold respectively in the HMM mushroom extract-treated ORL-204 cells. Novelty and scientific contribution: Using ORL-204, we showed that HMM mushroom extract may act via the TNF pathway at various network sites as a potential dietary compound for cancer prevention and natural adjunct therapeutic to conventional cancer treatment.

3.
Electrophoresis ; 42(3): 233-244, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33085102

RESUMEN

Milk serves as the sole nutrition for newborns, as well as a medium for the transfer of immunological components from the mother to the baby. This study reveals different glycoprotein profiles obtained from human, bovine, and caprine milk and their potential roles in supporting infant growth. Proteins from these three milk samples are separated and analyzed using two-dimensional gel electrophoresis (2-DE). Glycosylated proteins from all samples are enriched by affinity chromatography using lectins from the seeds of Artocarpus integer before analysis using LC/MS-QTOF. The glycoproteome profiling demonstrates that glycosylated proteins are higher in caprine milk compared to other samples. Analysis using LC/MS-QTOF identified 42 O-glycosylated and 56 N-glycosylated proteins, respectively. Among those identified, human milk has 17 glycoproteins, which are both O- and N-glycosylated, whereas caprine and bovine have 10 and 1, respectively. Only glycoproteins from human milk have shown positive matching to important human biological pathways, such as vesicle-mediated transport, immune system and hemostasis pathways. Human milk remains unique for human babies with the presence of antibodies in the form of immunoglobulins that are lacking in ruminant milk proteomes.


Asunto(s)
Glicoproteínas , Leche Humana/química , Leche/química , Adulto , Animales , Bovinos , Cromatografía de Afinidad , Electroforesis en Gel Bidimensional , Femenino , Glicoproteínas/análisis , Glicoproteínas/química , Glicoproteínas/aislamiento & purificación , Glicosilación , Cabras , Humanos , Lectinas
4.
Food Technol Biotechnol ; 59(2): 201-208, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34316281

RESUMEN

RESEARCH BACKGROUND: Ophiocordyceps sinensis, a highly valued medicinal fungus, is close to extinction due to overexploitation. Successful cultivation of O. sinensis fruiting body (OCS02®) shows that the cultivar has a promising nutritional value and numerous bioactive compounds. Antioxidant and antiproliferative properties and biologically active proteins of the OCS02® are investigated for possible development into nutraceuticals. EXPERIMENTAL APPROACH: The chemical composition of the OCS02® cold water extract was determined, and the antioxidant activities were examined using ferric reducing, DPPH• and O2 •- scavenging assays. Tetrazolium dye (MTT) cytotoxic assay was performed to assess the antiproliferative activity of the extract. Bioactive proteins in the active fraction of the extract were identified using liquid chromatography (LC) and tandem-mass spectrometry (MS/MS). RESULTS AND CONCLUSIONS: The OCS02® extract exhibited strong O2 •- scavenging (expressed as Trolox equivalents (18.4±1.1) mol/g) and potent cytotoxic activities against adenocarcinomic human alveolar basal epithelial (A549) cells (IC50=(58.2±6.8) µg/mL). High molecular mass polysaccharides, proteins and protein-polysaccharide complexes could have contributed to the antioxidant and cytotoxic selectivity of the OCS02®. LC-MS/MS analysis identified several potential cytotoxic proteases and an oxalate decarboxylase protein which may exhibit protection effects on kidneys. NOVELTY AND SCIENTIFIC CONTRIBUTIONS: The findings demonstrate the potential of OCS02® to be developed into functional food due to its promising superoxide anion radical scavenging capacity, cytotoxic effect and presence of biopharmaceutically active proteins.

5.
IUBMB Life ; 71(7): 821-826, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30629799

RESUMEN

Sclerotial powder of a cultivated species of the Tiger Milk Mushroom, Lignosus cameronensis was analysed for its nutritional components and compared against species of the same genus, Lignosus rhinocerus and Lignosus tigris. All three species have been used by indigenous tribes in Peninsular Malaysia as medicinal mushrooms. Content of carbohydrate, fibre, mineral, amino acid, palatable index, fat, ash and moisture were determined. L. cameronensis sclerotial material consists of carbohydrate (79.7%), protein (12.4%) and dietary fibre (5.4%) with low fat (1.7%) and no free sugar. It has the highest content of total carbohydrate (791 g kg-1 ), energy value (3,700 kcal kg-1 ) and calcium (0.85 g kg-1 ). The crude protein content (123 g kg-1 ) is comparable to that of L. rhinocerus with its main amino acids consisting of glutamic acid, aspartic acid and leucine. The umami index is determined to be 0.27. The total essential amino acid (45 g kg-1 ) is comparable to that of L. tigris. The main mineral is potassium (1.51 g kg-1 ) and the Na/K ratio was <0.6. Heavy metals such as mercury, cadmium, lead and arsenic were absent. L. cameronensis has the highest amount of food energy, total carbohydrate and calcium compared to those of both L. rhinocerus and L. tigris. The essential amino acids comprised almost 40% of the total amino acid content, slightly more than that reported from sclerotial powder of the L. tigris. © 2019 IUBMB Life, 9999(9999):1-6, 2019.


Asunto(s)
Aminoácidos/análisis , Carbohidratos/análisis , Metales Pesados/análisis , Minerales/análisis , Nutrientes/análisis , Plantas Medicinales/metabolismo , Polyporaceae/metabolismo , Humanos , Valor Nutritivo , Plantas Medicinales/crecimiento & desarrollo , Polyporaceae/crecimiento & desarrollo
6.
Microb Cell Fact ; 16(1): 103, 2017 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-28606152

RESUMEN

BACKGROUND: Genome mining facilitated by heterologous systems is an emerging approach to access the chemical diversity encoded in basidiomycete genomes. In this study, three sesquiterpene synthase genes, GME3634, GME3638, and GME9210, which were highly expressed in the sclerotium of the medicinal mushroom Lignosus rhinocerotis, were cloned and heterologously expressed in a yeast system. RESULTS: Metabolite profile analysis of the yeast culture extracts by GC-MS showed the production of several sesquiterpene alcohols (C15H26O), including cadinols and germacrene D-4-ol as major products. Other detected sesquiterpenes include selina-6-en-4-ol, ß-elemene, ß-cubebene, and cedrene. Two purified major compounds namely (+)-torreyol and α-cadinol synthesised by GME3638 and GME3634 respectively, are stereoisomers and their chemical structures were confirmed by 1H and 13C NMR. Phylogenetic analysis revealed that GME3638 and GME3634 are a pair of orthologues, and are grouped together with terpene synthases that synthesise cadinenes and related sesquiterpenes. (+)-Torreyol and α-cadinol were tested against a panel of human cancer cell lines and the latter was found to exhibit selective potent cytotoxicity in breast adenocarcinoma cells (MCF7) with IC50 value of 3.5 ± 0.58 µg/ml while α-cadinol is less active (IC50 = 18.0 ± 3.27 µg/ml). CONCLUSIONS: This demonstrates that yeast-based genome mining, guided by transcriptomics, is a promising approach for uncovering bioactive compounds from medicinal mushrooms.


Asunto(s)
Agaricales/química , Antineoplásicos/metabolismo , Saccharomyces cerevisiae/metabolismo , Sesquiterpenos/metabolismo , Agaricales/genética , Transferasas Alquil y Aril/genética , Transferasas Alquil y Aril/metabolismo , Antineoplásicos/química , Antineoplásicos/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Estructura Molecular , Saccharomyces cerevisiae/genética , Sesquiterpenos/química , Sesquiterpenos/farmacología , Relación Estructura-Actividad
7.
BMC Genomics ; 16: 687, 2015 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-26358635

RESUMEN

BACKGROUND: The king cobra (Ophiophagus hannah) is widely distributed throughout many parts of Asia. This study aims to investigate the complexity of Malaysian Ophiophagus hannah (MOh) venom for a better understanding of king cobra venom variation and its envenoming pathophysiology. The venom gland transcriptome was investigated using the Illumina HiSeq™ platform, while the venom proteome was profiled by 1D-SDS-PAGE-nano-ESI-LCMS/MS. RESULTS: Transcriptomic results reveal high redundancy of toxin transcripts (3357.36 FPKM/transcript) despite small cluster numbers, implying gene duplication and diversification within restricted protein families. Among the 23 toxin families identified, three-finger toxins (3FTxs) and snake-venom metalloproteases (SVMPs) have the most diverse isoforms. These 2 toxin families are also the most abundantly transcribed, followed in descending order by phospholipases A2 (PLA2s), cysteine-rich secretory proteins (CRISPs), Kunitz-type inhibitors (KUNs), and L-amino acid oxidases (LAAOs). Seventeen toxin families exhibited low mRNA expression, including hyaluronidase, DPP-IV and 5'-nucleotidase that were not previously reported in the venom-gland transcriptome of a Balinese O. hannah. On the other hand, the MOh proteome includes 3FTxs, the most abundantly expressed proteins in the venom (43 % toxin sbundance). Within this toxin family, there are 6 long-chain, 5 short-chain and 2 non-conventional 3FTx. Neurotoxins comprise the major 3FTxs in the MOh venom, consistent with rapid neuromuscular paralysis reported in systemic envenoming. The presence of toxic enzymes such as LAAOs, SVMPs and PLA2 would explain tissue inflammation and necrotising destruction in local envenoming. Dissimilarities in the subtypes and sequences between the neurotoxins of MOh and Naja kaouthia (monocled cobra) are in agreement with the poor cross-neutralization activity of N. kaouthia antivenom used against MOh venom. Besides, the presence of cobra venom factor, nerve growth factors, phosphodiesterase, 5'-nucleotidase, and DPP-IV in the venom proteome suggests its probable hypotensive action in subduing prey. CONCLUSION: This study reports the diversity and abundance of toxins in the venom of the Malaysian king cobra (MOh). The results correlate with the pathophysiological actions of MOh venom, and dispute the use of Naja cobra antivenoms to treat MOh envenomation. The findings also provide a deeper insight into venom variations due to geography, which is crucial for the development of a useful pan-regional antivenom.


Asunto(s)
Elapidae/genética , Elapidae/metabolismo , Proteoma , Transcriptoma , Ponzoñas/metabolismo , Secuencia de Aminoácidos , Animales , Biología Computacional/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Datos de Secuencia Molecular , Filogenia , Alineación de Secuencia
8.
Int J Med Sci ; 12(1): 23-31, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25552915

RESUMEN

Lignosus rhinocerotis (Cooke) Ryvarden (Polyporales, Basidiomycota), also known as the tiger milk mushroom, has received much interest in recent years owing to its wide-range ethnobotanical uses and the recent success in its domestication. The sclerotium is the part with medicinal value. Using two-dimensional gel electrophoresis coupled with mass spectrometry analysis, a total of 16 non-redundant, major proteins were identified with high confidence level in L. rhinocerotis sclerotium based on its genome as custom mapping database. Some of these proteins, such as the putative lectins, immunomodulatory proteins, superoxide dismutase, and aegerolysin may have pharmaceutical potential; while others are involved in nutrient mobilization and the protective antioxidant mechanism in the sclerotium. The findings from this study provide a molecular basis for future research on potential pharmacologically active proteins of L. rhinocerotis.


Asunto(s)
Proteínas Fúngicas/aislamiento & purificación , Proteínas Fúngicas/farmacología , Polyporaceae/química , Proteómica/métodos , Antioxidantes/aislamiento & purificación , Antioxidantes/farmacología , Electroforesis en Gel Bidimensional , Proteínas Hemolisinas/farmacología , Espectrometría de Masas/métodos , Sistemas de Lectura Abierta , Plantas Medicinales/química , Polyporaceae/genética , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
9.
BMC Genomics ; 15: 635, 2014 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-25073817

RESUMEN

BACKGROUND: The sclerotium of Lignosus rhinocerotis (Cooke) Ryvarden or Tiger milk mushroom (Polyporales, Basidiomycota) is a valuable folk medicine for indigenous peoples in Southeast Asia. Despite the increasing interest in this ethnobotanical mushroom, very little is known about the molecular and genetic basis of its medicinal and nutraceutical properties. RESULTS: The de novo assembled 34.3 Mb L. rhinocerotis genome encodes 10,742 putative genes with 84.30% of them having detectable sequence similarities to others available in public databases. Phylogenetic analysis revealed a close evolutionary relationship of L. rhinocerotis to Ganoderma lucidum, Dichomitus squalens, and Trametes versicolor in the core polyporoid clade. The L. rhinocerotis genome encodes a repertoire of enzymes engaged in carbohydrate and glycoconjugate metabolism, along with cytochrome P450s, putative bioactive proteins (lectins and fungal immunomodulatory proteins) and laccases. Other genes annotated include those encoding key enzymes for secondary metabolite biosynthesis, including those from polyketide, nonribosomal peptide, and triterpenoid pathways. Among them, the L. rhinocerotis genome is particularly enriched with sesquiterpenoid biosynthesis genes. CONCLUSIONS: The genome content of L. rhinocerotis provides insights into the genetic basis of its reported medicinal properties as well as serving as a platform to further characterize putative bioactive proteins and secondary metabolite pathway enzymes and as a reference for comparative genomics of polyporoid fungi.


Asunto(s)
Genómica , Medicina Tradicional de Asia Oriental , Polyporales/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genes Fúngicos/genética , Filogenia , Polyporales/metabolismo , Polisacáridos/genética , Polisacáridos/metabolismo
10.
Int J Med Sci ; 11(6): 593-601, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24782648

RESUMEN

King cobra (Ophiophagus hannah) venom L-amino acid oxidase (OH-LAAO), a heat stable enzyme, has been shown to exhibit very potent anti-proliferative activity against human breast and lung tumorigenic cells but not in their non-tumorigenic counterparts. We further examine its in vitro and in vivo anti-tumor activity in a human prostate adenocarcinoma (PC-3) model. OH-LAAO demonstrated potent cytotoxicity against PC-3 cells with IC50 of 0.05 µg/mL after 72 h incubation in vitro. It induced apoptosis as evidenced with an increase in caspase-3/7 cleavages and an increase in annexin V-stained cells. To examine its in vivo anti-tumor activity, we treated PC-3 tumor xenograft implanted subcutaneously in immunodeficient NU/NU (nude) mice with 1 µg/g OH-LAAO given intraperitoneally (i.p.). After 8 weeks of treatment, OH-LAAO treated PC-3 tumors were markedly inhibited, when compared to the control group (P <0.05). TUNEL staining analysis on the tumor sections showed a significantly increase of apoptotic cells in the LAAO-treated animals. Histological examinations of the vital organs in these two groups showed no significant differences with normal tissues, indicating no obvious tissue damage. The treatment also did not cause any significant changes on the body weight of the mice during the duration of the study. These observations suggest that OH-LAAO cytotoxic effects may be specific to tumor xenografts and less to normal organs. Given its potent anti-tumor activities shown in vitro as well as in vivo, the king cobra venom LAAO can potentially be developed to treat prostate cancer and other solid tumors.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Elapidae , L-Aminoácido Oxidasa/administración & dosificación , Neoplasias de la Próstata/tratamiento farmacológico , Animales , Apoptosis/efectos de los fármacos , Humanos , Masculino , Ratones , Neoplasias de la Próstata/patología , Venenos de Serpiente/enzimología , Ensayos Antitumor por Modelo de Xenoinjerto
11.
Int J Med Sci ; 11(6): 602-7, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24782649

RESUMEN

The Lignosus is a genus of fungi that have useful medicinal properties. In Southeast Asia, three species of Lignosus (locally known collectively as Tiger milk mushrooms) have been reported including L. tigris, L. rhinocerotis, and L. cameronensis. All three have been used as important medicinal mushrooms by the natives of Peninsular Malaysia. In this work, the nutritional composition and antioxidant activities of the wild type and a cultivated strain of L. tigris sclerotial extracts were investigated. The sclerotia are rich in carbohydrates with moderate amount of protein and low fat content. Free radical scavenging activities of L. tigris sclerotial extracts correlate with their phenolic content, which ranges from 6.25 to 45.42 mg GAE/g extract. The FRAP values ranged from 0.002 to 0.041 mmol/min/g extract, while the DPPH(•), ABTS(•+), and superoxide anion (SOA) scavenging activities ranged from 0.18 to 2.53, 0.01 to 0.36, and -4.53 to 10.05 mmol Trolox equivalents/g extract, respectively. L. tigris cultivar shows good prospect to be developed into functional food due to its good nutritional value and potent SOA scavenging activity.


Asunto(s)
Antioxidantes/administración & dosificación , Fenoles/metabolismo , Polyporaceae/química , Superóxidos/metabolismo , Agaricales/química , Antioxidantes/química , Depuradores de Radicales Libres/metabolismo , Fenoles/química
12.
BMC Complement Altern Med ; 14: 359, 2014 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-25256382

RESUMEN

BACKGROUND: The sclerotium of Lignosus rhinocerotis (Cooke) Ryvarden (Tiger Milk mushroom) is used as a traditional medicine to relieve cough, asthma and chronic hepatitis. The traditional uses of the sclerotium are presumably related to its anti-inflammatory effect. The present study was carried out to evaluate the anti-inflammatory activity of the sclerotial powder of L. rhinocerotis (Cooke) Ryvarden (Tiger Milk mushroom) cultivar TM02. METHODS: The anti-acute inflammatory activity of the sclerotial powder of L. rhinocerotis cultivar TM02 was investigated using carrageenan-induced paw edema test while the inhibition of transudative and proliferative phases of chronic inflammation were studied by cotton pellet induced granuloma model. Sprague Dawley rats were used in both studies. The anti-inflammatory activity was also measured by inhibition of lipopolysaccharide induced TNF-alpha production in RAW 264.7 macrophage cells. RESULTS: Cold water extract (CWE), hot water extract (HWE) and methanol extract (ME) of the sclerotial powder of L. rhinocerotis cultivar TM02 possessed anti-acute inflammatory activity as was measured by carrageenan-induced paw edema test, with CWE being the most potent. The acute anti-inflammatory activity of the cold water extract (CWE) was mainly contributed by its high molecular weight (HMW) fraction isolated by Sephadex G50 gel filtration chromatography. Its protein component was very potent in the inhibition of TNF-alpha production with an IC50 of 0.76 µg/ml. CWE at 200 mg/kg did not inhibit transudative and proliferative phase of chronic inflammation as shown by using the cotton pellet induced granuloma model. CONCLUSIONS: Our results suggested that most of the bioactive substance(s) contributed to the acute-inflammatory activity of the sclerotial powder of L. rhinocerotis cultivar TM02 appear to be in the CWE, particularly its HMW fraction. The anti-inflammatory activity of CWE was mainly contributed by the protein component of the high molecular weight (HMW) fraction and it exhibited strong inhibitory effect on TNF-alpha production but the possibility of synergistic effect between HMW, MMW and LMW fractions cannot be excluded. Future studies will provide new insights into the anti-inflammatory activity of the sclerotial powder.


Asunto(s)
Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Micelio/química , Polyporaceae/química , Animales , Antiinflamatorios/química , Carragenina/toxicidad , Línea Celular , Edema/inducido químicamente , Edema/tratamiento farmacológico , Granuloma , Masculino , Ratones , Ratas , Ratas Sprague-Dawley , Factor de Necrosis Tumoral alfa/análisis , Factor de Necrosis Tumoral alfa/efectos de los fármacos , Factor de Necrosis Tumoral alfa/metabolismo
13.
Indian J Exp Biol ; 52(9): 849-59, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25241584

RESUMEN

Mucuna pruriens is widely used in traditional medicine for treatments of various diseases. In certain region of Nigeria, the seed is used as oral prophylactics for snakebite. Rats pretreated with the aqueous extract from M. pruriens seed (MPE) were protected against the lethal effects of Naja sputatrix (Javan spitting cobra) venom [Tan et al., J Ethnopharmacol, 123 (2009) 356]. The pretreatment also protected against venom-induced histopathological changes in rat heart. To contribute to the understanding of the mechanism of cardio-protective action, the present study examined the effects of MPE-pretreatment on gene expression profile of rat heart as well as effect of MPE-pretreatment on N. sputatrix venom-induced gene expression alterations in rat heart. The gene expression profiles were examined by microarray analysis and verified by real time PCR. The results showed that pretreatment with MPE caused 50 genes in the rat heart substantially up-regulated of which 19 were related to immune responses, 7 were related to energy production and metabolism. The up-regulation of genes related to energy metabolism probably plays a role in maintaining the viability of the heart. Four other genes that were up-regulated (alpha synuclein, natriuretic peptide precursor, calsequestrin and triadin) were involved in the maintenance of homeostasis of the heart or maintaining its viability, thereby contributing to the direct protective action. The results demonstrated that protective effect of MPE pretreatment against snake venom poisoning may involve a direct action on the heart.


Asunto(s)
Venenos Elapídicos/toxicidad , Regulación de la Expresión Génica/efectos de los fármacos , Corazón/efectos de los fármacos , Corazón/fisiología , Mucuna/química , Extractos Vegetales/farmacología , Sustancias Protectoras/farmacología , Animales , Perfilación de la Expresión Génica , Masculino , Miocardio/química , Miocardio/metabolismo , Extractos Vegetales/química , Sustancias Protectoras/química , Ratas , Ratas Sprague-Dawley , Semillas/química
14.
Nat Prod Res ; : 1-7, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38912899

RESUMEN

Lignosus cameronensis holds promise for exploration given its morphological likeness to the renowned Lignosus rhinocerus, or tiger milk mushroom. Investigating its potential medicinal and industrial applications addresses a significant knowledge gap in this field. A comparative analysis with other Lignosus species and cultivars provides insights into biopharmacological potential. L. cameronensis cold water extract (LC-CWE) displayed moderate antioxidant activity, demonstrating promising Trolox equivalent antioxidant -capacity. Variable cytotoxicity was observed in different cell lines, with an IC50 of 215 µg/ml against breast cancer cells (MCF-7) cells. LC-CWE exhibited anti-inflammatory potential with an ED50 of 60 mg/kg in a λ-carrageenan-induced rat paw oedema model. Comparison with other Lignosus species and cultivars emphasised LC-CWE's distinct attributes, including high phenolic content and moderate antioxidant capacity. LC-CWE displayed potential in selectively inhibiting MCF-7 cells and reducing inflammation, highlighting its medicinal promise. This research expands our understanding of L. cameronensis and underscores the need for further mechanistic exploration.

15.
J Ethnopharmacol ; 328: 118073, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38513780

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Medicinal mushrooms belonging to the Lignosus spp., colloquially known as Tiger Milk mushrooms (TMMs), are used as traditional medicine by communities across various regions of China and Southeast Asia to enhance immunity and to treat various diseases. At present, three Lignosus species have been identified in Malaysia: L. rhinocerus, L. tigris, and L. cameronensis. Similarities in their macroscopic morphologies and the nearly indistinguishable appearance of their sclerotia often lead to interchangeability between them. Hence, substantiation of their traditional applications via identification of their individual bioactive properties is imperative in ensuring that they are safe for consumption. L. tigris was first identified in 2013. Thus far, studies on L. tigris cultivar sclerotia (Ligno TG-K) have shown that it possesses significant antioxidant activities and has greater antiproliferative action against selected cancer cells in vitro compared to its sister species, L. rhinocerus TM02®. Our previous genomics study also revealed significant genetic dissimilarities between them. Further omics investigations on Ligno TG-K hold immense potential in facilitating the identification of its bioactive compounds and their associated bioactivities. AIM OF STUDY: The overall aim of this study was to investigate the gene expression profile of Ligno TG-K via de novo RNA-seq and pathway analysis. We also aimed to identify highly expressed genes encoding compounds that contribute to its cytotoxic and antioxidant properties, as well as perform a comparative transcriptomics analysis between Ligno TG-K and its sister species, L. rhinocerus TM02®. MATERIALS AND METHODS: Total RNA from fresh 3-month-old cultivated L. tigris sclerotia (Ligno TG-K) was extracted and analyzed via de novo RNA sequencing. Expressed genes were analyzed using InterPro and NCBI-Nr databases for domain identification and homology search. Functional categorization based on gene functions and pathways was performed using Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Clusters of Orthologous Genes (COG) databases. Selected genes were subsequently subjected to phylogenetic analysis. RESULTS: Our transcriptomics analysis of Ligno TG-K revealed that 68.06% of its genes are expressed in the sclerotium; 80.38% of these were coding transcripts. Our analysis identified highly expressed transcripts encoding proteins with prospective medicinal properties. These included serine proteases (FPKM = 7356.68), deoxyribonucleases (FPKM = 3777.98), lectins (FPKM = 3690.87), and fungal immunomodulatory proteins (FPKM = 2337.84), all of which have known associations with anticancer activities. Transcripts linked to proteins with antioxidant activities, such as superoxide dismutase (FPKM = 1161.69) and catalase (FPKM = 1905.83), were also highly expressed. Results of our sequence alignments revealed that these genes and their orthologs can be found in other mushrooms. They exhibit significant sequence similarities, suggesting possible parallels in their anticancer and antioxidant bioactivities. CONCLUSION: This study is the first to provide a reference transcriptome profile of genes expressed in the sclerotia of L. tigris. The current study also presents distinct COG profiles of highly expressed genes in Ligno TG-K and L. rhinocerus TM02®, highlighting that any distinctions uncovered may be attributed to their interspecies variations and inherent characteristics that are unique to each species. Our findings suggest that Ligno TG-K contains bioactive compounds with prospective medicinal properties that warrant further investigations. CLASSIFICATION: Systems biology and omics.


Asunto(s)
Agaricales , Polyporaceae , Antioxidantes/metabolismo , Transcriptoma , RNA-Seq , Agaricales/genética , Filogenia , Estudios Prospectivos , Polyporaceae/genética
16.
Fungal Biol Biotechnol ; 11(1): 7, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38987829

RESUMEN

Medicinal mushrooms, such as Taiwanofungus camphoratus, Inonotus obliquus, and Tropicoporus linteus, have been used in traditional medicine for therapeutic purposes and promotion of overall health in China and many East Asian countries for centuries. Modern pharmacological studies have demonstrated the large amounts of bioactive constituents (such as polysaccharides, triterpenoids, and phenolic compounds) available in these medicinal mushrooms and their potential therapeutic properties. Due to the rising demand for the health-promoting medicinal mushrooms, various cultivation methods have been explored to combat over-harvesting of the fungi. Evidence of the robust pharmacological properties, including their anticancer, hypoglycemic, hypolipidemic, antioxidant, and antiviral activities, have been provided in various studies, where the health-benefiting properties of the medicinal fungi have been further proven through numerous clinical trials. In this review, the cultivation methods, available bioactive constituents, therapeutic properties, and potential uses of T. camphoratus, I. obliquus and T. linteus are explored.

17.
BMC Complement Altern Med ; 13: 347, 2013 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-24517259

RESUMEN

BACKGROUND: Coriandrum sativum is a popular culinary and medicinal herb of the Apiaceae family. Health promoting properties of this herb have been reported in pharmacognostical, phytochemical and pharmacological studies. However, studies on C. sativum have always focused on the aerial parts of the herb and scientific investigation on the root is limited. The aim of this research was to investigate the antioxidant and anticancer activities of C. sativum root, leaf and stem, including its effect on cancer cell migration, and its protection against DNA damage, with special focus on the roots. METHODS: Powdered roots, leaves and stems of C. sativum were extracted through sequential extraction using hexane, dichloromethane, ethyl acetate, methanol and water. Total phenolic content, FRAP and DPPH radical scavenging activities were measured. Anti-proliferative activitiy on the breast cancer cell line, MCF-7, was assayed using the MTT assay. Activities of the antioxidant enzymes, catalase, superoxide dismutase, glutathione peroxidase, and of the caspases-3, -8 and -9 were assayed on treatment with the extract. Cell cycle progression was analysed using flow cytometry. The scratch motility assay was used to assess inhibition of MCF-7 cell migration. DNA damage in 3 T3-L1 fibroblasts was evaluated by the comet assay. The components in the extract were identified by HPLC and GC-MS. RESULTS: The ethyl acetate extract of C. sativum roots showed the highest antiproliferative activity on MCF-7 cells (IC50 = 200.0 ± 2.6 µg/mL) and had the highest phenolic content, FRAP and DPPH scavenging activities among the extracts. C. sativum root inhibited DNA damage and prevented MCF-7 cell migration induced by H2O2, suggesting its potential in cancer prevention and inhibition of metastasis. The extract exhibited anticancer activity in MCF-7 cells by affecting antioxidant enzymes possibly leading to H2O2 accumulation, cell cycle arrest at the G2/M phase and apoptotic cell death by the death receptor and mitochondrial apoptotic pathways. CONCLUSIONS: This study is the first report on the antioxidant and anticancer properties of C. sativum root. The herb shows potential in preventing oxidative stress-related diseases and would be useful as supplements used in combination with conventional drugs to enhance the treatment of diseases such as cancer.


Asunto(s)
Antioxidantes/farmacología , Neoplasias de la Mama/genética , Neoplasias de la Mama/fisiopatología , Movimiento Celular/efectos de los fármacos , Coriandrum/química , Daño del ADN/efectos de los fármacos , Extractos Vegetales/farmacología , Sustancias Protectoras/farmacología , Antioxidantes/química , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/enzimología , Catalasa/metabolismo , Femenino , Humanos , Células MCF-7 , Fenoles/farmacología , Extractos Vegetales/química , Hojas de la Planta/química , Raíces de Plantas/química , Sustancias Protectoras/química , Superóxido Dismutasa/metabolismo
18.
Indian J Exp Biol ; 51(12): 1063-9, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24579371

RESUMEN

The major hemorrhagin from C. purpureomaculatus (mangrove pit viper) venom was purified to homogeneity and termed Maculatoxin. Maculatoxin has a molecular weight of 38 kDa as determined by SDS-PAGE. It is an acidic protein (pI= 4.2) and exhibited proteolytic and hemorrhagic activities (MHD10 = 0.84 microg in mice) but was not lethal to mice at a dose of 1 microg/g. The hemorrhagic activity of Maculatoxin was completely inactivated by EDTA and partially inhibited by ATP and citrate. The N-terminal sequence of Maculatoxin (TPEQQRFPPTYIDLGIFVDHGMYAT) shares a significant degree of homology with the metalloprotease domain of other venom hemorrhagins. Indirect ELISA showed anti-Maculatoxin cross reacted with protein components of many snake venoms. In the double-sandwich ELISA, however, anti-Maculatoxin cross-reacted only with venoms of certain species of the Trimeresurus (Asia lance-head viper) complex, and the results support the recent proposed taxonomy changes concerning the Trimeresurus complex.


Asunto(s)
Endopeptidasas/aislamiento & purificación , Venenos de Serpiente/inmunología , Especificidad de la Especie , Trimeresurus/inmunología , Animales , Cromatografía en Gel , Reacciones Cruzadas/inmunología , Endopeptidasas/química , Endopeptidasas/inmunología , Ratones , Peso Molecular , Venenos de Serpiente/genética , Trimeresurus/fisiología
19.
Mycobiology ; 51(1): 1-15, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36846625

RESUMEN

Wound care has become increasingly important over the years. Various synthetic products for wound care treatment have been reported to cause toxic side effects and therefore natural products are in significant demand as they have minimal side effects. The presence of bioactive compounds in medicinal mushrooms contributes to various biological activities which assist in the early inflammatory phase, keratinocyte proliferation, and its migration enhancement which are pertinent to wound rehabilitation. Lignosus rhinocerus (tiger milk mushroom) can reduce the inflammation phase in wound healing by fighting off bacterial infection and modulating pro-inflammatory cytokines expression in the early stage to avoid prolonged inflammation and tissue damage. The antibacterial, immunomodulating, and anti-inflammatory activities exhibited by most macrofungi play a key role in enhancing wound healing. Several antibacterial and antifungal compounds sourced from traditional botanicals/products may prevent further complications and reoccurrence of injury to a wounded site. Scientific studies are actively underway to ascertain the potential use of macrofungi as a wound healing agent.

20.
J Ethnopharmacol ; 304: 115957, 2023 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-36509254

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Lignosus rhinocerus (Cooke) Ryvarden (also known as Tiger Milk mushroom, TMM), is a basidiomycete belonging to the Polyporaceae family. It has been documented to be used by traditional Chinese physicians and indigenous people in Southeast Asia to treat a variety of illnesses, such as gastritis, arthritis, and respiratory conditions, as well as to restore patients' physical well-being. TMM has also been used in folk medicine to treat cancer. For example, people from the indigenous Kensiu tribe of northeast Kedah (Malaysia) apply shredded TMM sclerotium mixed with water directly onto breast skin to treat breast cancer, while Chinese practitioners from Hong Kong, China prescribe TMM sclerotium as a treatment for liver cancer. L. rhinocerus has previously been demonstrated to possess selective anti-proliferative properties in vitro, however pre-clinical in vivo research has not yet been conducted. AIM OF STUDY: This study aimed to examine the anti-tumor activities of L. rhinocerus TM02®, using two different sample preparations [cold water extract (CWE) and fraction] via various routes of administration (oral and intraperitoneal) on an MCF7-xenograft nude mouse model. This study also investigated the inhibitory effect of TM02® CWE and its fractions against COX-2 in vitro using LPS-induced RAW264.7 macrophages, on the basis of the relationship between COX-2 and metastasis, apoptosis resistance, as well as the proliferation of cancer cells. MATERIALS AND METHODS: The first preparation, L. rhinocerus TM02® sclerotium powder (TSP) was dissolved in cold water to obtain the cold water extract (CWE). It was further fractionated based on its molecular weight to obtain the high (HMW), medium (MMW) and low (LMW) molecular weight fractions. The second preparation, known as the TM02® rhinoprolycan fraction (TRF), was obtained by combining the HMW and MMW fractions. TSP was given orally to mimic the daily consumption of a supplement; TRF was administered intraperitoneally to mimic typical tumorous cancer treatment with a rapid and more thorough absorption through the peritoneal cavity. Another experiment was conducted to examine changes in COX-2 activity in LPS-induced RAW264.7 macrophages after a 1-h pre-treatment with CWE, HMW, and MMW. RESULTS: Our results revealed that intraperitoneal TRF-injection (90 µg/g BW) for 20 days reduced initial tumor volume by ∼64.3% (n = 5). The percentage of apoptotic cells was marginally higher in TRF-treated mice vs. control, suggesting that induction of apoptosis as one of the factors that led to tumor shrinkage. TSP (500 µg/g BW) oral treatment (n = 5) for 63 days (inclusive of pre-treatment prior to tumor inoculation) effectively inhibited tumor growth. Four of the five tumors totally regressed, demonstrating the effectiveness of TSP ingestion in suppressing tumor growth. Although no significant changes were found in mouse serum cytokines (TNF-α, IL-5, IL-6 and CCL2), some increasing and decreasing trends were observed. This may suggest the immunomodulatory potential of these treatments that can directly or indirectly affect tumor growth. Pre-treatment with CWE, HMW and MMW significantly reduced COX-2 activity in RAW264.7 macrophages upon 24 h LPS-stimulation, suggesting the potential of L. rhinocerus TM02® extract and fractions in regulating M1/M2 polarization. CONCLUSION: Based on the findings of our investigation, both the rhinoprolycan fraction and crude sclerotial powder from L. rhinocerus TM02® demonstrated tumor suppressive effects, indicating that they contain substances with strong anticancer potential. The antitumor effects of L. rhinocerus TM02® in our study highlights the potential for further explorations into its mechanism of action and future development as a prophylactic or adjunct therapeutic against tumorous cancer.


Asunto(s)
Lipopolisacáridos , Polyporaceae , Humanos , Ratones , Animales , Ratones Desnudos , Polvos , Ciclooxigenasa 2 , Xenoinjertos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA