Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 153
Filtrar
1.
Nat Cell Biol ; 1(8): 507-13, 1999 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-10587647

RESUMEN

Melanoma chondroitin sulphate proteoglycan (MCSP) is a cell-surface antigen that has been implicated in the growth and invasion of melanoma tumours. Although this antigen is expressed early in melanoma progression, its biological function is unknown. MCSP can stimulate the integrin-alpha4 beta1-mediated adhesion and spreading of melanoma cells. Here we show that stimulated MCSP recruits tyrosine-phosphorylated p130 cas, an adaptor protein important in tumour cell motility and invasion. MCSP stimulation also results in a pronounced activation and recruitment of the Rho-family GTPase Cdc42. MCSP-induced spreading of melanoma cells is dependent upon active Cdc42, a Cdc42-associated tyrosine kinase (Ack-1) and tyrosine phosphorylation of p130cas. Furthermore, vectors inhibiting Ack-1 or Cdc42 expression and/or function abrogate MCSP-induced tyrosine phosphorylation and recruitment of p130cas. Our findings indicate that MCSP may modify tumour growth or invasion by a unique signal-transduction pathway that links Cdc42 activation to downstream tyrosine phosphorylation and subsequent cytoskeletal reorganization.


Asunto(s)
Proteoglicanos Tipo Condroitín Sulfato/metabolismo , Melanoma/metabolismo , Melanoma/patología , Fosfoproteínas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Proteínas , Proteína de Unión al GTP cdc42/metabolismo , Movimiento Celular , Proteína Sustrato Asociada a CrK , Activación Enzimática , Humanos , Integrina alfa4beta1 , Integrinas/metabolismo , Melanoma/genética , Mutación/genética , Invasividad Neoplásica , Fosforilación , Fosfotirosina/metabolismo , Pruebas de Precipitina , Unión Proteica , Proteínas Tirosina Quinasas/genética , Receptores Mensajeros de Linfocitos/metabolismo , Proteína p130 Similar a la del Retinoblastoma , Transducción de Señal , Transfección , Células Tumorales Cultivadas , Proteína de Unión al GTP cdc42/genética
2.
J Cell Biol ; 99(2): 464-70, 1984 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-6378923

RESUMEN

A 70,000-mol-wt protein was isolated from A431 carcinoma cell extracellular matrix that promotes cell substratum adhesion of these epidermoid tumor cells. Extracellular matrix was isolated by a modification of a procedure described by Hedman et al. (Hedman, K., M. Kurkinen, K. Alitalo, A. Vaheri, S. Johansson, and M. Höök, 1979 J. Cell Biol., 81:83-91) and Yamada and Weston (Yamada, K., and J. A. Weston, 1974, Proc. Natl. Acad. Sci. USA, 71:3492-3496). Cells were solubilized with 0.5% deoxycholate, 10 mM Tris, 0.9% NaCl, and 1 mM phenylmethylsulfonyl fluoride, pH 8.0. The residual matrix was then removed from the plates with 6 M urea and 1 mM phenylmethylsulfonyl fluoride and phosphate-buffered saline. SDS PAGE gels of the 6 M urea extract showed one major band at 70,000-mol-wt by Coomassie Blue staining. A 70,000-mol-wt isotopically-labeled band could also be extracted from the matrix of cells incubated with [35S]methionine. Because of the presence of this protein on squamous-derived epithelial cells we have called the 70,000-mol-wt molecule epinectin. Indirect immunofluorescence with polyclonal rabbit antibodies against epinectin stained A431 cells pericellularly in dense punctate accumulations and along the plasma membrane. Enzyme-linked immunoassays and gel-transfer immunolocalization studies showed that the extract did not cross-react with antibodies to fibronectin, laminin, serum-spreading factor, epibolin, or keratin. Additionally, antibodies to epinectin did not cross-react with these proteins. Further studies showed that epinectin does not bind to gelatin. Cell-adhesion assay, using radiolabeled A431 carcinoma cells on various adhesion-promoting substrates, showed that epinectin has similar adhesion-promoting capacity as serum-spreading factor, was somewhat less active than fibronectin, but more effective than laminin or epibolin. Epinectin appears to be a unique protein isolated from epidermoid tumor cells that is distinct from other known adhesion proteins.


Asunto(s)
Adhesión Celular , Proteínas de la Matriz Extracelular , Proteínas de Neoplasias/aislamiento & purificación , Carcinoma de Células Escamosas , Línea Celular , Ensayo de Inmunoadsorción Enzimática , Epitelio/ultraestructura , Femenino , Técnica del Anticuerpo Fluorescente , Humanos , Sueros Inmunes , Peso Molecular , Neoplasias de la Vulva
3.
J Cell Biol ; 98(4): 1474-80, 1984 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-6715409

RESUMEN

The migration of tumor cells through basement membranes and extracellular matrices is an integral component of tumor invasion and metastasis. Laminin and fibronectin are two basement membrane- and extracellular matrix-associated noncollagenous glycoproteins that have been shown to promote both cell adhesion and motility. Purified preparations of laminin and fibronectin stimulated the directed migration of B16 murine metastatic melanoma cells in vitro as assessed in modified Boyden chambers. The stimulation of migration occurred over a concentration range of 1-100 micrograms/ml of laminin or fibronectin, with a peak response occurring between 12.5 and 25 micrograms/ml. The maximal response of these cells was 80-120-fold higher than control migration. Affinity-purified antibody preparations specifically abrogated the migration of these cells in response to the respective proteins. Tumor cells in suspension were preincubated in physiologic levels of plasma fibronectin prior to assay to partially mimic what occurs when a metastasizing cell is in the blood stream. This preincubation with plasma fibronectin had no effect on the subsequent migration of cells in response to either laminin or fibronectin. Furthermore, experiments using filters precoated with fibronectin or laminin indicated that these cells could migrate by haptotaxis to these two proteins. We conclude that tumor cell migration in response to such noncollagenous adhesive glycoproteins could be an important aspect in the invasion and metastasis of certain malignant cell types.


Asunto(s)
Fibronectinas/farmacología , Laminina/farmacología , Melanoma/fisiopatología , Animales , Anticuerpos , Línea Celular , Movimiento Celular/efectos de los fármacos , Quimiotaxis , Ratones
4.
J Cell Biol ; 96(5): 1218-26, 1983 May.
Artículo en Inglés | MEDLINE | ID: mdl-6341376

RESUMEN

We studied a rat Schwannoma cell line (RN22F) to determine if it produced the basement membrane glycoproteins laminin and fibronectin, and how it interacted with these proteins in vitro. We used antisera to laminin and fibronectin for immunoprecipitation experiments and immunocytochemical localization at the electron microscope level. Polyacrylamide gels of antilaminin immunoprecipitates of conditioned medium and solubilized Schwannoma cells contained bands of reduced Mr 200,000 and 150,000. Antilaminin immunoprecipitates of conditioned medium contained nonreduced bands of 850,000 daltons and 150,000, and immunoprecipitates of solubilized cells contained nonreduced bands of 850,000, 400,000, 200,000, and 150,000 daltons. Antifibronectin immunoprecipitates of conditioned medium contained a reduced band of 220,000 daltons, and nonreduced bands of 440,000 and 220,000 daltons. Radio-labeled protein was not detected in antifibronectin immunoprecipitates of solubilized cells. By immunocytochemistry, laminin was found along the cell surface in a continuous band, whereas fibronectin was only sparsely distributed along the cell surface. In cell adhesion assays, Schwannoma cells bound preferentially to laminin-coated substrates as compared to fibronectin or noncoated substrates. A number of Schwannoma cells displayed a curved and elongated morphology on laminin substrates, as compared to a uniformly spread morphology on fibronectin, and a round, nonspread morphology on noncoated substrates. Immunofluorescent staining showed laminin in the endoneurium and perineurium and fibronectin predominantly in the perineurium of mouse sciatic nerve in vivo. The production of laminin and fibronectin by Schwann cells may be important in the development and myelination of peripheral nerves, and the proper regeneration of axons following nerve injury.


Asunto(s)
Fibronectinas/biosíntesis , Glicoproteínas/biosíntesis , Células de Schwann/citología , Nervio Ciático/análisis , Animales , Técnica del Anticuerpo Fluorescente , Laminina , Ratones , Microscopía Electrónica , Peso Molecular , Ratas , Células de Schwann/metabolismo
5.
J Cell Biol ; 102(1): 179-88, 1986 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-3941152

RESUMEN

The active migration of tumor cells through extracellular matrices has been proposed to play a role in certain aspects of metastasis. Metastatic tumor cells migrate in vitro in response to substratum-bound adhesive glycoproteins such as fibronectin. The present studies use affinity-purified proteolytic fragments of fibronectin to determine the nature of adhesion- and/or motility-promoting domains within the protein. Two distinct fragments were identified with cell adhesion-promoting activities. By a number of criteria, the adhesive activity promoted by these two fragments was distinct. One fragment, a 75-kD tryptic fragment purified by monoclonal antibody chromatography, promoted the adhesion, spreading, and haptotactic motility of melanoma cells. Experiments using a synthetic cell attachment peptide in solution indicated that at least part of the attachment activity exhibited by the 75-kD fragment is mediated by the sequence arg-gly-asp-ser. It was not possible to demonstrate migration-stimulating activity using a small (11.5 kD) peptic fragment containing this sequence (Pierschbacher, M.D., E. G. Hayman, and E. Ruoslahti, 1981, Cell, 26:259-267) suggesting that another cell-binding activity within the 75 kD fragment distinct from arg-gly-asp-ser might be required for motility. The second fragment that stimulated melanoma adhesion was a 33-kD tryptic/catheptic carboxyl-terminal heparin-binding fragment, which is localized to the A chain of fibronectin. This fragment promotes adhesion and spreading but not the motility of these cells. Melanoma adhesion to this heparin-binding fragment was sensitive to the effects of cycloheximide, which contrasted adhesion to the haptotaxis-promoting fragment. Importantly, these studies illustrate that haptotaxis in response to fibronectin is not due to simple adhesion gradients of this protein. The results are discussed in light of a model for multiple distinct cell surface constituents mediating cell adhesion and motility on fibronectin.


Asunto(s)
Adhesión Celular , Movimiento Celular , Fibronectinas/fisiología , Melanoma/patología , Metástasis de la Neoplasia , Animales , Sitios de Unión , Catepsinas/metabolismo , Adhesión Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Quimiotaxis , Heparina/metabolismo , Melanoma/fisiopatología , Ratones , Fragmentos de Péptidos/inmunología , Fragmentos de Péptidos/farmacología , Tripsina/metabolismo
6.
J Cell Biol ; 97(3): 772-7, 1983 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-6885918

RESUMEN

Laminin is a large (greater than 850-kdalton) glycoprotein that is localized within basement membranes. Recent work has indicated that this protein is present within the endoneurium of mouse sciatic nerve. Furthermore, it has been shown that a rat Schwannoma cell line, RN22F, produced laminin and that laminin promoted the attachment of these cells to bacterial plastic. This report presents evidence that RN22F cells migrate in vitro to laminin in a concentration-dependent fashion. Laminin was extracted from the mouse EHS tumor and purified by molecular sieve and heparin-agarose affinity chromatography. The migration of Schwannoma cells to laminin, as assessed in a microwell modified Boyden chamber, was inhibited in a dose-dependent manner by affinity-purified antilaminin antibody. Zigmond-Hirsch checkerboard analysis experiments indicated that laminin stimulated both random and directed movement of RN22F cells. Additionally, reversal of the laminin gradient in the chambers also stimulated RN22F migration in a concentration-dependent manner, suggesting that directed migration of RN22F cells was due to a substratum-bound laminin (haptotaxis) as opposed to cell movement in response to fluid-phase laminin (chemotaxis). Binding studies using [3H]laminin demonstrated that laminin bound to the filter surface under the assay conditions used, and support the contention that cells are migrating to substrate-bound material. Furthermore, RN22F cells were shown to migrate on filters coated with laminin in the absence of additional fluid-phase laminin. The magnitude of this response could be altered by changing the relative density of bound laminin. In contrast, fibronectin promoted only marginal migration of RN22F cells. Collectively, these observations indicate that haptotaxis may be a mechanism by which laminin may guide cells during development and raise the possibility that it may be involved in peripheral nervous system myelination.


Asunto(s)
Membrana Basal/fisiología , Glicoproteínas/fisiología , Neurilemoma/fisiopatología , Animales , Movimiento Celular , Quimiotaxis , Relación Dosis-Respuesta a Droga , Fibronectinas/fisiología , Laminina , Neoplasias Experimentales/fisiopatología , Ratas
7.
J Cell Biol ; 106(4): 1365-73, 1988 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-3360855

RESUMEN

Laminin and type IV collagen were compared for the ability to promote aortic endothelial cell adhesion and directed migration in vitro. Substratum-adsorbed IV promoted aortic endothelial cell adhesion in a concentration dependent fashion attaining a maximum level 141-fold greater than controls within 30 min. Aortic endothelial cell adhesion to type IV collagen was not inhibited by high levels (10(-3) M) of arginyl-glycyl-aspartyl-serine. In contrast, adhesion of aortic endothelial cells on laminin was slower, attaining only 53% of the adhesion observed on type IV collagen by 90 min. Type IV collagen when added to the lower well of a Boyden chamber stimulated the directional migration of aortic endothelial cells in a concentration dependent manner with a maximal response 6.9-fold over control levels, whereas aortic endothelial cells did not migrate in response to laminin at any concentration (.01-2.0 X 10(-7) M). Triple helix-rich fragments of type IV collagen were nearly as active as intact type IV collagen in stimulating both adhesion and migration whereas the carboxy terminal globular domain was less active at promoting adhesion (36% of the adhesion promoted by intact type IV collagen) or migration. Importantly, aortic endothelial cells also migrate to substratum adsorbed gradients of type IV collagen suggesting that the mechanism of migration is haptotactic in nature. These results demonstrate that the aortic endothelial cell adhesion and migration is preferentially promoted by type IV collagen compared with laminin, and has a complex molecular basis which may be important in angiogenesis and large vessel repair.


Asunto(s)
Colágeno/fisiología , Endotelio Vascular/citología , Laminina/fisiología , Animales , Aorta Torácica , Adhesión Celular , Movimiento Celular , Células Cultivadas , Colágeno/farmacología , Electroforesis en Gel de Poliacrilamida , Cinética , Laminina/farmacología , Oligopéptidos/farmacología
8.
J Cell Biol ; 117(2): 449-59, 1992 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-1560034

RESUMEN

The purpose of this study was to identify the binding site(s) within laminin for the alpha 3 beta 1 integrin receptor. It has been previously shown, using proteolytic fragments and anti-laminin antibodies, that the region in laminin for alpha 3 beta 1 integrin binding is localized to the carboxy-terminal region at the end of the long arm (Gehlsen, K. R., E. Engvall, K. Dickerson, W. S. Argraves, and E. Ruoslahti. 1989. J. Biol. Chem. 264:19034-19038; Tomaselli, K. J., D. E. Hall, L. T. Reichardt, L. A. Flier, K. R. Gehlsen, D. C. Turner, and S. Carbonetto. 1990. Neuron. 5:651-662). Using synthetic peptides, we have identified an amino acid sequence within the carboxy-terminal region of the laminin A chain that is recognized by the alpha 3 beta 1 integrin. The amino acid sequence represented by the synthetic peptide GD-6 (KQNCLSSRASFRGCVRNLRLSR residues numbered 3011 to 3032) of the globular domain of the murine A chain supports cell attachment and inhibits cell adhesion to laminin-coated surfaces. By affinity chromatography, peptide GD-6-Sepharose specifically bound solubilized alpha 3 beta 1 from extracts of surface-iodinated cells in a cation-dependent manner, while it did not bind other integrins. In addition, exogenous peptide GD-6 specifically eluted bound alpha 3 beta 1 from laminin-Sepharose columns but did not elute the alpha 3 beta 1 integrin from a fibronectin-Sepharose column. Using integrin subunit-specific monoclonal antibodies, only those antibodies against the alpha 3 and beta 1 subunits inhibited cell adhesion to peptide GD-6-coated surfaces. Finally, a polyclonal antibody made against peptide GD-6 reacted specifically with both murine and human laminin and significantly inhibited cell adhesion to laminin-coated surfaces but not those coated with other matrix proteins. These results identify the laminin A chain amino acid sequence of peptide GD-6 as representing a binding site in laminin for the alpha 3 beta 1 integrin.


Asunto(s)
Integrinas/metabolismo , Laminina/metabolismo , Fragmentos de Péptidos/metabolismo , Péptidos/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Adhesión Celular , Cromatografía de Afinidad , Humanos , Integrina alfa3beta1 , Integrinas/inmunología , Integrinas/aislamiento & purificación , Laminina/química , Laminina/farmacología , Datos de Secuencia Molecular , Fragmentos de Péptidos/química , Péptidos/química , Células Tumorales Cultivadas
9.
J Cell Biol ; 118(2): 431-44, 1992 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-1629241

RESUMEN

Cellular recognition and adhesion to the extracellular matrix (ECM) has a complex molecular basis, involving both integrins and cell surface proteoglycans (PG). The current studies have used specific inhibitors of chondroitin sulfate proteoglycan (CSPG) synthesis along with anti-alpha 4 integrin subunit monoclonal antibodies to demonstrate that human melanoma cell adhesion to an A-chain derived, 33-kD carboxyl-terminal heparin binding fragment of human plasma fibronectin (FN) involves both cell surface CSPG and alpha 4 beta 1 integrin. A direct role for cell surface CSPG in mediating melanoma cell adhesion to this FN fragment was demonstrated by the identification of a cationic synthetic peptide, termed FN-C/H-III, within the fragment. FN-C/H-III is located close to the amino terminal end of the fragment, representing residues #1721-1736 of intact FN. FN-C/H-III binds CSPG directly, can inhibit CSPG binding to the fragment, and promotes melanoma cell adhesion by a CSPG-dependent, alpha 4 beta 1 integrin-independent mechanism. A scrambled version of FN-C/H-III does not inhibit CSPG binding or cell adhesion to the fragment or to FN-C/H-III, indicating that the primary sequence of FN-C/H-III is important for its biological properties. Previous studies have identified three other synthetic peptides from within this 33-kD FN fragment that promote cell adhesion by an arginyl-glycyl-aspartic acid (RGD) independent mechanism. Two of these synthetic peptides (FN-C/H-I and FN-C/H-II) bind heparin and promote cell adhesion, implicating cell surface PG in mediating cellular recognition of these two peptides. Additionally, a third synthetic peptide, CS1, is located in close proximity to FN-C/H-I and FN-C/H-II and it promotes cell adhesion by an alpha 4 beta 1 integrin-dependent mechanism. In contrast to FN-C/H-III, cellular recognition of these three peptides involved contributions from both CSPG and alpha 4 integrin subunits. Of particular importance are observations demonstrating that CS1-mediated melanoma cell adhesion could be inhibited by interfering with CSPG synthesis or expression. Since CS1 does not bind CSPG, the results suggest that CSPG may modify the function and/or activity of alpha 4 beta 1 integrin on the surface of human melanoma cells. Together, these results support a model in which the PG and integrin binding sites within the 33-kD fragment may act in concert to focus these two cell adhesion receptors into close proximity on the cell surface, thereby influencing initial cellular recognition events that contribute to melanoma cell adhesion on this fragment.


Asunto(s)
Adhesión Celular , Proteoglicanos Tipo Condroitín Sulfato/fisiología , Fibronectinas/metabolismo , Integrinas/fisiología , Melanoma/fisiopatología , Secuencia de Aminoácidos , Proteoglicanos Tipo Condroitín Sulfato/biosíntesis , Cromatografía en Gel , Cromatografía por Intercambio Iónico , Glicosaminoglicanos/biosíntesis , Heparina/metabolismo , Humanos , Cinética , Sustancias Macromoleculares , Melanoma/inmunología , Datos de Secuencia Molecular , Oligopéptidos/síntesis química , Oligopéptidos/metabolismo , Plásticos , Unión Proteica , Proteoglicanos/aislamiento & purificación , Proteoglicanos/metabolismo , Células Tumorales Cultivadas
10.
J Cell Biol ; 115(4): 1137-48, 1991 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-1955458

RESUMEN

The large carboxy-terminal globular domain (G domain; residues 2,110-3,060) of the A chain of murine-derived laminin has been shown to promote heparin binding, cell adhesion, and neurite outgrowth. This study was conducted to define the potential sequence(s) originating from the G domain of laminin with any of these functional activities. A series of peptides were synthesized from the G domain, termed GD peptides, each approximately 20 amino acids long and containing multiple positively charged amino acids. In direct 3H-heparin binding assays, peptides GD-1 and GD-2 bound high levels of 3H-heparin, while peptides GD-3 and GD-4 bound lower levels of 3H-heparin, and GD-5 bound essentially no 3H-heparin. The binding of 3H-heparin to peptides GD-1 and GD-2 appeared to be of high affinity, since significant binding of 3H-heparin to these two peptides was still observed even when the NaCl concentration was raised to 1.0 M. Four of the peptides, GD-1, GD-2, GD-3, and GD-4, directly promoted the adhesion and spreading of HT-1080 human fibrosarcoma cells as well as the outgrowth of neurites from chick spinal cord and dorsal root ganglia neurons. In addition, solutions of these peptides or antibodies generated against these peptides inhibited laminin-mediated HT-1080 cell adhesion. Antibodies against the beta 1 integrin subunit inhibited HT-1080 cell adhesion and neurite outgrowth on surfaces adsorbed with peptides GD-3 and GD-4. Therefore, laminin appears to have multiple, independent sequences in the G domain that serve a similar cell adhesion promoting function for different cell types. Furthermore, these results suggest that the sequences comprising peptides GD-3 and GD-4 use an integrin as a receptor, of which the beta 1 integrin subunit is a component for these various cell types.


Asunto(s)
Heparina/metabolismo , Integrinas/metabolismo , Laminina/fisiología , Neuritas/fisiología , Secuencia de Aminoácidos , Animales , Anticuerpos/inmunología , Adhesión Celular , División Celular , Embrión de Pollo , Humanos , Laminina/antagonistas & inhibidores , Laminina/química , Laminina/metabolismo , Datos de Secuencia Molecular , Células PC12 , Péptidos/síntesis química , Péptidos/metabolismo , Péptidos/farmacología , Unión Proteica , Células Tumorales Cultivadas
11.
J Cell Biol ; 101(1): 73-8, 1985 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-4008536

RESUMEN

The interaction of migrating newt epidermal cells with the extracellular matrix protein, fibronectin, was studied. Pieces of nitrocellulose coated with intact human plasma fibronectin or proteolytically derived fragments were implanted into wounded limbs so that the coated nitrocellulose served as wound bed for migrating epidermal cells as they attempted to form a wound epithelium. Epidermal cells migrated very poorly on nitrocellulose pieces coated with (a) a 27-kD amino-terminal heparin-binding fragment, (b) a 46-kD gelatin-binding fragment, (c) a combined 33- and 66-kD carboxy-terminal heparin-binding preparation representing peptide sequences in the A and B chains, respectively, or (d) a 31-kD carboxy-terminal fragment from the A chain, containing a free sulfhydryl group. In contrast, epidermal cells readily migrated onto nitrocellulose coated with a mixture of fragments from the middle of the molecule (80-125kD) that bind neither heparin nor gelatin. Attempts to block migration on fibronectin-coated nitrocellulose using IB10, a monoclonal antibody that blocks Chinese hamster ovary cell attachment to fibronectin, were unsuccessful despite saturation of the epitope against which IB10 is directed. In contrast, a polyclonal anti-fibronectin antibody did inhibit migration. These results show that the ability of fibronectin to support newt epidermal cell migration is not shared equally by all regions of the molecule, but is restricted to a domain in the middle third. They also suggest that the site supporting migration is separate and distinct from the site mediating Chinese hamster ovary cell attachment.


Asunto(s)
Movimiento Celular , Células Epidérmicas , Fibronectinas/fisiología , Cicatrización de Heridas , Animales , Anticuerpos Monoclonales , Adhesión Celular , Colodión , Matriz Extracelular/fisiología , Fibronectinas/inmunología , Masculino , Fragmentos de Péptidos , Conformación Proteica , Salamandridae , Relación Estructura-Actividad
12.
J Cell Biol ; 110(3): 777-87, 1990 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-2307707

RESUMEN

Cell adhesion to extracellular matrix components such as fibronectin has a complex basis, involving multiple determinants on the molecule that react with discrete cell surface macromolecules. Our previous results have demonstrated that normal and transformed cells adhere and spread on a 33-kD heparin binding fragment that originates from the carboxy-terminal end of particular isoforms (A-chains) of human fibronectin. This fragment promotes melanoma adhesion and spreading in an arginyl-glycyl-aspartyl-serine (RGDS) independent manner, suggesting that cell adhesion to this region of fibronectin is independent of the typical RGD/integrin-mediated binding. Two synthetic peptides from this region of fibronectin were recently identified that bound [3H]heparin in a solid-phase assay and promoted the adhesion and spreading of melanoma cells (McCarthy, J. B., M. K. Chelberg, D. J. Mickelson, and L. T. Furcht. 1988. Biochemistry. 27:1380-1388). The current studies further define the cell adhesion and heparin binding properties of one of these synthetic peptides. This peptide, termed peptide I, has the sequence YEKPGSP-PREVVPRPRPGV and represents residues 1906-1924 of human plasma fibronectin. In addition to promoting RGD-independent melanoma adhesion and spreading in a concentration-dependent manner, this peptide significantly inhibited cell adhesion to the 33-kD fragment or intact fibronectin. Polyclonal antibodies generated against peptide I also significantly inhibited cell adhesion to the peptide, to the 33-kD fragment, but had minimal effect on melanoma adhesion to fibronectin. Anti-peptide I antibodies also partially inhibited [3H]heparin binding to fibronectin, suggesting that peptide I represents a major heparin binding domain on the intact molecule. The cell adhesion activity of another peptide from the 33-kD fragment, termed CS1 (Humphries, M. J., A. Komoriya, S. K. Akiyama, K. Olden, and K. M. Yamada. 1987. J. Biol. Chem., 262:6886-6892) was contrasted with peptide I. Whereas both peptides promoted RGD-independent cell adhesion, peptide CS1 failed to bind heparin, and exogenous peptide CS1 failed to inhibit peptide I-mediated cell adhesion. The results demonstrate a role for distinct heparin-dependent and -independent cell adhesion determinants on the 33-kD fragment, neither of which are related to the RGD-dependent integrin interaction with fibronectin.


Asunto(s)
Adhesión Celular , Fibronectinas/metabolismo , Heparina/metabolismo , Oligopéptidos/metabolismo , Secuencia de Aminoácidos , Línea Celular , Humanos , Cinética , Melanoma , Datos de Secuencia Molecular , Peso Molecular , Fragmentos de Péptidos/metabolismo , Células Tumorales Cultivadas/fisiología
13.
J Cell Biol ; 111(1): 261-70, 1990 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-2365734

RESUMEN

The adhesion and motility of tumor cells on basement membranes is a central consideration in tumor cell invasion and metastasis. Basement membrane type IV collagen directly promotes the adhesion and migration of various tumor cell types in vitro. Our previous studies demonstrated that tumor cells adhered and spread on surfaces coated with intact type IV collagen or either of the two major enzymatically purified domains of this protein. Only one of these major domains, the pepsin-generated major triple helical fragment, also supported tumor cell motility in vitro, implicating the involvement of the major triple helical region in type IV collagen-mediated tumor cell invasion in vivo. The present studies extend our previous observations using a synthetic peptide approach. A peptide, designated IV-H1, was derived from a continuous collagenous region of the major triple helical domain of the human alpha 1(IV) chain. This peptide, which has the sequence GVKGDKGNPGWPGAP, directly supported the adhesion, spreading, and motility of the highly metastatic K1735 M4 murine melanoma cell line, as well as the adhesion and spreading of other cell types, in a concentration-dependent manner in vitro. Furthermore, excess soluble peptide IV-H1, or polyclonal antibodies directed against peptide IV-H1, inhibited type IV collagen-mediated melanoma cell adhesion, spreading, and motility, but had no effect on these cellular responses to type I collagen. The full complement of cell adhesion, spreading, and motility promoting activities was dependent upon the preservation of the three prolyl residues in the peptide IV-H1 sequence. These studies indicate that peptide IV-H1 represents a cell-specific adhesion, spreading, and motility promoting domain that is active within the type IV collagen molecule.


Asunto(s)
Colágeno/farmacología , Péptidos/farmacología , Células Tumorales Cultivadas/fisiología , Secuencia de Aminoácidos , Animales , Adhesión Celular/efectos de los fármacos , Línea Celular , Movimiento Celular/efectos de los fármacos , Colágeno/síntesis química , Cinética , Melanoma Experimental , Ratones , Datos de Secuencia Molecular , Péptidos/síntesis química , Células Tumorales Cultivadas/citología , Células Tumorales Cultivadas/efectos de los fármacos
14.
J Cell Biol ; 111(6 Pt 1): 2733-45, 1990 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-2277084

RESUMEN

Cellular interactions with fibronectin-treated substrata have a complex molecular basis involving multiple domains. A carboxy-terminal cell and heparin binding region of fibronectin (FN) is particularly interesting because it is a strong promoter of neurite outgrowth (Rogers, S.L., J.B. McCarthy, S.L. Palm, L.T. Furcht, and P.C. Letourneau, 1985. J. Neurosci. 5:369-378) and cell attachment (McCarthy, J.B., S.T. Hagen, and L.T. Furcht. 1986. J. Cell Biol. 102:179-188). To further understand the molecular mechanisms of neuronal interactions with this region of FN, we screened two peptides from the 33-kD heparin binding fragment of the FN A chain, FN-C/H II (KNNQKSEPLIGRKKT) and CS1 (Humphries, M.J., A. Komoriya, S.K. Akiyama, K. Olden, and K.M. Yamada. 1987. J. Biol. Chem. 262:6886-6892), for their ability to promote B104 neuroblastoma cell-substratum adhesion and neurite outgrowth. Both FN-C/H II and CS1 promoted B104 cell attachment in a concentration-dependent and saturable manner, with attachment to FN-C/H II exceeding attachment to CS1. In solution, both exogenous FN-C/H II or CS1 partially inhibited cell adhesion to the 33-kD fragment. Similar results were obtained with anti-FN-C/H II antibodies. In contrast, soluble GRGDSP did not affect B104 cell adhesion to FN-C/H II. These results indicate that both FN-C/H II and CS1 represent distinct, RGD-independent, cell adhesion-promoting sites active within the 33-kD fragment, and further define FN-C/H II as a novel neural recognition sequence in FN. B104 adhesion to FN-C/H II and CS1 differs in sensitivity to heparin, yet each peptide inhibited adhesion to the other peptide, suggesting cell adhesion is somehow related at the cellular level. Within the A chain 33-kD fragment, FN-C/H II and CS1 are contiguous, and might represent components of a larger domain with greater neurite-promoting activity since only the 33-kD fragment, and neither individual peptide, was effective at promoting B104 neurite outgrowth. These data further support the hypothesis that cell responses to FN are mediated by multiple sites involving both heparin-sensitive and -insensitive mechanisms.


Asunto(s)
Adhesión Celular , Fibronectinas/metabolismo , Heparina/metabolismo , Acetilglucosaminidasa/metabolismo , Secuencia de Aminoácidos , Animales , Anticuerpos/aislamiento & purificación , Sitios de Unión , Línea Celular , Fibronectinas/fisiología , Humanos , Cinética , Sustancias Macromoleculares , Datos de Secuencia Molecular
15.
J Cell Biol ; 117(6): 1331-41, 1992 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-1607392

RESUMEN

Cell surface heparan sulfate proteoglycan (HSPG) from metastatic mouse melanoma cells initiates cell adhesion to the synthetic peptide FN-C/H II, a heparin-binding peptide from the 33-kD A chain-derived fragment of fibronectin. Mouse melanoma cell adhesion to FN-C/H II was sensitive to soluble heparin and pretreatment of mouse melanoma cells with heparitinase. In contrast, cell adhesion to the fibronectin synthetic peptide CS1 is mediated through an alpha 4 beta 1 integrin and was resistant to heparin or heparitinase treatment. Mouse melanoma cell HSPG was metabolically labeled with [35S]sulfate and extracted with detergent. After HPLC-DEAE purification, 35S-HSPG eluted from a dissociative CL-4B column with a Kav approximately 0.45, while 35S-heparan sulfate (HS) chains eluted with a Kav approximately 0.62. The HSPG contained a major 63-kD core protein after heparitinase digestion. Polyclonal antibodies generated against HSPG purified from mouse melanoma cells grown in vivo also identified a 63-kD core protein. This HSPG is an integral plasma membrane component by virtue of its binding to Octyl Sepharose affinity columns and that anti-HSPG antibody staining exhibited a cell surface localization. The HSPG is anchored to the cell surface through phosphatidylinositol (PI) linkages, as evidenced in part by the ability of PI-specific phospholipase C to eliminate binding of the detergent-extracted HSPG to Octyl Sepharose. Furthermore, the mouse melanoma HSPG core protein could be metabolically labeled with 3H-ethanolamine. The involvement of mouse melanoma cell surface HSPG in cell adhesion to fibronectin was also demonstrated by the ability of anti-HSPG antibodies and anti-HSPG IgG Fab monomers to inhibit mouse melanoma cell adhesion to FN-C/H II. 35S-HSPG and 35S-HS bind to FN-C/H II affinity columns and require 0.25 M NaCl for elution. However, heparitinase-treated 125I-labeled HSPG failed to bind FN-C/H II, suggesting that HS, and not HSPG core protein, binds FN-C/H II. These data support the hypothesis that a phosphatidylinositol-anchored HSPG on mouse melanoma cells (MPIHP-63) initiates recognition to FN-C/H II, and implicate PI-associated signal transduction pathways in mediating melanoma cell adhesion to this defined ligand.


Asunto(s)
Adhesión Celular , Fibronectinas/metabolismo , Heparina/metabolismo , Heparitina Sulfato/metabolismo , Melanoma/metabolismo , Proteoglicanos/metabolismo , Secuencia de Aminoácidos , Animales , Anticuerpos , Western Blotting , Membrana Celular/metabolismo , Cromatografía en Gel , Cromatografía Líquida de Alta Presión , Fibronectinas/química , Técnica del Anticuerpo Fluorescente , Proteoglicanos de Heparán Sulfato , Heparitina Sulfato/inmunología , Ratones , Datos de Secuencia Molecular , Fragmentos de Péptidos/síntesis química , Fragmentos de Péptidos/metabolismo , Fosfatidilinositoles/metabolismo , Proteoglicanos/inmunología , Transducción de Señal , Células Tumorales Cultivadas
16.
J Cell Biol ; 105(3): 1435-42, 1987 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-2958484

RESUMEN

Mechanisms of cell interaction with fibronectin have been studied with proteolytic fibronectin fragments that have well-defined ligand binding properties. Results of a previous study (Rogers, S. L., J. B. McCarthy, S. L. Palm, L. T. Furcht, and P. C. Letourneau, 1985, J. Neurosci., 5:369-378) demonstrated that (a) central (CNS) and peripheral (PNS) nervous system neurons adhere to, and extend neurites on a 33-kD carboxyl terminal fibronectin fragment that also binds heparin, and (b) neurons from the PNS, but not the CNS, have stable interactions with a 75-kD cell-binding fragment and with intact fibronectin. In the present study domain-specific reagents were used in inhibition assays to further differentiate cell surface interactions with the two fibronectin domains, and to define the significance of these domains to cell interactions with the intact fibronectin molecule. These reagents are (a) a soluble synthetic tetrapeptide Arg-Gly-Asp-Ser (RGDS; Pierschbacher, M. D., and E. Ruoslahti, 1984, Nature (Lond.), 309:30-33) representing a cell-binding determinant in the 75-kD fragment, and (b) an antibody raised against the 33-kD fragment that binds specifically to that fragment. Initial cell attachment to, and neurite extension upon, fibronectin and the two different fragments was evaluated in the presence and absence of the two reagents. Attachment of both PNS and CNS cells to intact fibronectin was reduced in the presence of RGDS, the former more so than the latter. In contrast, the antibody to the 33-kD fragment did not affect attachment of PNS cells to fibronectin, but significantly decreased attachment of CNS cells to the molecule. RGDS inhibited attachment of CNS cells to the molecule. RGDS inhibited attachment of both cell types to the 75-kD fragment to a greater degree than it did attachment to the intact molecule. Cell interaction with the 33-kD fragment was not affected by RGDS. Reduction of neurite lengths (determined after 24 h of culture) by the domain-specific reagents paralleled the reduction in initial adhesion to each substratum. Therefore, it appears that (a) both PNS and CNS cells have receptors for each cell-binding domain of fibronectin, (b) the receptor(s) for the two domains are distinct, with attachment to the 33-kD fragment being independent of RGDS, and (c) the relative importance of each domain to cell interaction with intact fibronectin is different for CNS and PNS cells.


Asunto(s)
Fibronectinas/metabolismo , Ganglios Espinales/metabolismo , Neuronas/metabolismo , Receptores Inmunológicos/metabolismo , Médula Espinal/metabolismo , Animales , Anticuerpos Monoclonales , Axones/ultraestructura , Adhesión Celular , Embrión de Pollo , Ganglios Espinales/citología , Humanos , Neuronas/citología , Oligopéptidos/farmacología , Receptores de Fibronectina , Médula Espinal/citología
17.
J Cell Biol ; 111(4): 1583-91, 1990 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-2211826

RESUMEN

We have previously identified three distinctive amino acid sequences from type IV collagen which specifically bound to heparin and also inhibited the binding of heparin to intact type IV collagen. One of these chemically synthesized domains, peptide Hep-I, has the sequence TAGSCLRKFSTM and originates from the a1(noncollagenous [NC1]) chain of type IV collagen (Koliakos, G. G., K. K. Koliakos, L. T. Furcht, L. A. Reger, and E. C. Tsilibary. 1989. J. Biol. Chem. 264:2313-2323). We describe in this report that this same peptide also bound to intact type IV collagen in solid-phase assays, in a dose-dependent and specific manner. Interactions between peptide Hep-I and type IV collagen in solution resulted in inhibition of the assembly process of this basement membrane glycoprotein. Therefore, peptide Hep-I should represent a major recognition site in type IV collagen when this protein polymerizes to form a network. In addition, solid phase-immobilized peptide Hep-I was able to promote the adhesion and spreading of bovine aortic endothelial cells. When present in solution, peptide Hep-I competed for the binding of these cells to type IV collagen- and NC1 domain-coated substrata in a dose-dependent manner. Furthermore, radiolabeled peptide Hep-I in solution also bound to endothelial cells in a dose-dependent and specific manner. The binding of radiolabeled Hep-I to endothelial cells could be inhibited by an excess of unlabeled peptide. Finally, in the presence of heparin or chondroitin/dermatan sulfate glycosaminoglycan side chains, the binding of endothelial cells to peptide Hep-I and NC1 domain-coated substrates was also inhibited. We conclude that peptide Hep-I should have a number of functions. The role of this type IV collagen-derived sequence in such diverse phenomena as self-association, heparin binding and cell binding and adhesion makes Hep-I a crucial domain involved in the determination of basement membrane ultrastructure and cellular interactions with type IV collagen-containing matrices.


Asunto(s)
Colágeno/química , Secuencia de Aminoácidos , Animales , Aorta , Bovinos , Adhesión Celular/fisiología , Movimiento Celular/fisiología , Endotelio Vascular/citología , Endotelio Vascular/metabolismo , Heparina/metabolismo , Técnicas In Vitro , Cinética , Datos de Secuencia Molecular , Fragmentos de Péptidos/metabolismo , Unión Proteica , Relación Estructura-Actividad
18.
J Cell Biol ; 107(3): 1253-60, 1988 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-3417782

RESUMEN

Recent studies using solid-phase-binding assays and electron microscopy suggested the presence of a heparin-binding domain between the inner globule of a lateral short arm and the cross region of laminin. Using the information from the amino acid sequence of the B1 chain of laminin, several peptides were synthesized from areas with a low hydropathy index and a high density of lysines and/or arginines. One of these, peptide F-9 (RYVVLPRPVCFEKGMNYTVR), which is derived from the inner globular domain of the lateral short arm, demonstrated specific binding to heparin. This was tested in direct solid-phase binding assays by coating the peptide either on nitrocellulose or on polystyrene and in indirect competition assays where the peptide was in solution and either laminin or heparin was immobilized on a solid support. The binding of [3H]heparin to peptide F-9 was dramatically reduced when heparin but not other glycosaminoglycans other than heparin (dextran sulfate, dermatan sulfate) were used in competition assays. Modification of the free amino groups of peptide F-9 by acetylation abolished its ability to inhibit the binding of [3H]heparin to laminin on polystyrene surfaces. Peptide F-9 promoted the adhesion of various cell lines (melanoma, fibrosarcoma, glioma, pheochromocytoma) and of aortic endothelial cells. Furthermore, when peptide F-9 was present in solution, it inhibited the adhesion of melanoma cells to laminin-coated substrates. These findings suggest that peptide F-9 defines a novel heparin-binding and cell adhesion-promoting site on laminin.


Asunto(s)
Adhesión Celular , Heparina/metabolismo , Laminina/metabolismo , Fragmentos de Péptidos/metabolismo , Secuencia de Aminoácidos , Animales , Unión Competitiva , Línea Celular , Fibrosarcoma , Glioma , Melanoma , Ratones , Datos de Secuencia Molecular , Fragmentos de Péptidos/síntesis química , Feocromocitoma , Células Tumorales Cultivadas
19.
J Clin Invest ; 94(2): 655-62, 1994 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-8040319

RESUMEN

In an experimental model of arthritis, increased leukocyte adhesion is associated with the evolution of acute and chronic synovial inflammation. Whereas peripheral blood mononuclear cells (PBMC) from control animals bind minimally to fibronectin matrices, PBMC from animals receiving arthropathic doses of bacterial cell walls demonstrate increased integrin mRNA expression and enhanced adhesion. To determine whether this augmented adhesion was causal in the development of synovial pathology, peptides synthesized from several fibronectin domains which inhibited leukocyte adhesion in vitro were administered to arthritic animals either as free peptides or coupled to a carrier molecule. Not only were peptides containing either the RGD or CS-1 cell-binding domains inhibitory to chronic synovial pathology (articular index = 10.5 +/- 0.3 for untreated animals compared to 1.25 +/- 0.25 for RGD and 2.5 +/- 0.7 for CS-1), but three peptides synthesized from the carboxy-terminal 33-kD heparin-binding domain of fibronectin were also found to significantly inhibit leukocyte recruitment and the evolution of arthritis. Based on these data, which are the first to explore the therapeutic potential of heparin-binding fibronectin peptides in chronic inflammation, it appears that antagonism of cellular adhesion and recruitment by fibronectin peptides may provide an important mechanism for modulating the multi-step adhesion process and attenuating aberrant inflammatory responses.


Asunto(s)
Artritis/prevención & control , Fibronectinas/farmacología , Leucocitos/efectos de los fármacos , Fragmentos de Péptidos/farmacología , Secuencia de Aminoácidos , Animales , Adhesión Celular/efectos de los fármacos , Pared Celular/inmunología , Femenino , Heparina/metabolismo , Integrinas/fisiología , Leucocitos/fisiología , Datos de Secuencia Molecular , Oligopéptidos/farmacología , Ratas , Ratas Endogámicas Lew , Streptococcus/inmunología
20.
Mol Biol Cell ; 4(6): 605-13, 1993 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-8374170

RESUMEN

Cell adhesion to extracellular matrix molecules such as fibronectin involves complex transmembrane signaling processes. Attachment and spreading of primary fibroblasts can be promoted by interactions of cell surface integrins with RGD-containing fragments of fibronectin, but the further process of focal adhesion and stress fiber formation requires additional interactions. Heparin-binding fragments of fibronectin can provide this signal. The COOH-terminal heparin-binding domain of fibronectin contains five separate heparin-binding amino acid sequences. We show here that all five sequences, as synthetic peptides coupled to ovalbumin, can support cell attachment. Only three of these sequences can promote focal adhesion formation when presented as multicopy complexes, and only one of these (WQPPRARI) retains this activity as free peptide. The major activity of this peptide resides in the sequence PRARI. The biological response to this peptide and to the COOH-terminal fragment may be mediated through cell surface heparan sulfate proteoglycans because treatment of cells with heparinase II and III, or competition with heparin, reduces the response. Treatment with chondroitinase ABC or competition with chondroitin sulfate does not.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Adhesión Celular , Fibronectinas/metabolismo , Heparina/metabolismo , Fragmentos de Péptidos/metabolismo , Secuencia de Aminoácidos , Anticuerpos Monoclonales , Unión Competitiva , Células Cultivadas , Condroitinasas y Condroitín Liasas/metabolismo , Fibroblastos , Fibronectinas/química , Liasa de Heparina , Humanos , Datos de Secuencia Molecular , Fragmentos de Péptidos/química , Polisacárido Liasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA