Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
J Biol Chem ; 298(3): 101714, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35151693

RESUMEN

Forkhead box O (FoxO) transcription factors are conserved proteins involved in the regulation of life span and age-related diseases, such as diabetes and cancer. Stress stimuli or growth factor deprivation promotes nuclear localization and activation of FoxO proteins, which-depending on the cellular context-can lead to cell cycle arrest or apoptosis. In endothelial cells (ECs), they further regulate angiogenesis and may promote inflammation and vessel destabilization implicating a role of FoxOs in vascular diseases. In several cancers, FoxOs exert a tumor-suppressive function by regulating proliferation and survival. We and others have previously shown that FoxOs can regulate these processes via two different mechanisms: by direct binding to forkhead-responsive elements at the promoter of target genes or by a poorly understood alternative process that does not require direct DNA binding and regulates key targets in primary human ECs. Here, we performed an interaction study in ECs to identify new nuclear FoxO3 interaction partners that might contribute to FoxO-dependent gene regulation. Mass spectrometry analysis of FoxO3-interacting proteins revealed transformation/transcription domain-associated protein (TRRAP), a member of multiple histone acetyltransferase complexes, as a novel binding partner of FoxO family proteins. We demonstrate that TRRAP is required to support FoxO3 transactivation and FoxO3-dependent G1 arrest and apoptosis in ECs via transcriptional activation of the cyclin-dependent kinase inhibitor p27kip1 and the proapoptotic B-cell lymphoma 2 family member, BIM. Moreover, FoxO-TRRAP interaction could explain FoxO-induced alternative gene regulation via TRRAP-dependent recruitment to target promoters lacking forkhead-responsive element sequences.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Células Endoteliales , Proteína Forkhead Box O3 , Histona Acetiltransferasas , Proteínas Nucleares , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Apoptosis/genética , Células Endoteliales/metabolismo , Proteína Forkhead Box O3/genética , Proteína Forkhead Box O3/metabolismo , Expresión Génica , Histona Acetiltransferasas/genética , Histona Acetiltransferasas/metabolismo , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo
2.
Int J Mol Sci ; 22(14)2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-34299213

RESUMEN

The MEK5/ERK5 mitogen-activated protein kinases (MAPK) cascade is a unique signaling module activated by both mitogens and stress stimuli, including cytokines, fluid shear stress, high osmolarity, and oxidative stress. Physiologically, it is mainly known as a mechanoreceptive pathway in the endothelium, where it transduces the various vasoprotective effects of laminar blood flow. However, it also maintains integrity in other tissues exposed to mechanical stress, including bone, cartilage, and muscle, where it exerts a key function as a survival and differentiation pathway. Beyond its diverse physiological roles, the MEK5/ERK5 pathway has also been implicated in various diseases, including cancer, where it has recently emerged as a major escape route, sustaining tumor cell survival and proliferation under drug stress. In addition, MEK5/ERK5 dysfunction may foster cardiovascular diseases such as atherosclerosis. Here, we highlight the importance of the MEK5/ERK5 pathway in health and disease, focusing on its role as a protective cascade in mechanical stress-exposed healthy tissues and its function as a therapy resistance pathway in cancers. We discuss the perspective of targeting this cascade for cancer treatment and weigh its chances and potential risks when considering its emerging role as a protective stress response pathway.


Asunto(s)
Aterosclerosis/fisiopatología , MAP Quinasa Quinasa 5/metabolismo , Sistema de Señalización de MAP Quinasas , Proteína Quinasa 7 Activada por Mitógenos/metabolismo , Animales , Aterosclerosis/metabolismo , Humanos , Neoplasias/enzimología , Neoplasias/metabolismo
3.
J Invest Dermatol ; 140(12): 2455-2465.e10, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32376279

RESUMEN

Cutaneous melanoma is a highly malignant tumor typically driven by somatic mutation in the oncogenes BRAF or NRAS, leading to uncontrolled activation of the MEK/ERK MAPK pathway. Despite the availability of immunotherapy, MAPK pathway‒targeting regimens are still a valuable treatment option for BRAF-mutant melanoma. Unfortunately, patients with NRAS mutation do not benefit from such therapies owing to the lack of targetable BRAF mutations and a high degree of intrinsic and acquired resistance toward MEK inhibition. Here, we demonstrate that concomitant inhibition of ERK5 removes this constraint and effectively sensitizes NRAS-mutant melanoma cells for MAPK pathway‒targeting therapy. Using approved MEK inhibitors or a pharmacologic ERK inhibitor, we demonstrate that MAPK inhibition triggers a delayed activation of ERK5 through a PDGFR inhibitor-sensitive pathway in NRAS-mutant melanoma cells, resulting in sustained proliferation and survival. ERK5 phosphorylation also occurred naturally in NRAS-mutant melanoma cells and correlated with nuclear localization of its stem cell-associated effector KLF2. Importantly, MEK/ERK5 co-inhibition prevented long-term growth of human NRAS-mutant melanoma cells in vitro and effectively repressed tumor progression in a xenotransplant mouse model. Our findings suggest MEK/ERK5 cotargeting as a potential treatment option for NRAS-mutant melanoma, which currently is not amenable for targeted therapies.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Melanoma/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Neoplasias Cutáneas/tratamiento farmacológico , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Línea Celular Tumoral , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Femenino , GTP Fosfohidrolasas/genética , Humanos , Melanoma/genética , Melanoma/patología , Proteínas de la Membrana/genética , Ratones , Proteína Quinasa 1 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Proteína Quinasa 7 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 7 Activada por Mitógenos/metabolismo , Terapia Molecular Dirigida/métodos , Mutación , Inhibidores de Proteínas Quinasas/uso terapéutico , Piel/patología , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/patología , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA